Honeycomb Artifact Removal Using Convolutional NeuralNetwork for Fiber Bundle Imaging
问题描述
在光纤束的成像过程中,由于光线的传播特性,会出现蜂窝状的伪影,同时由于光纤传像束的物理结构及排列方式,蜂窝效应伪影将图像划分成一个个类圆区域。蜂窝效应伪影不仅使得图像细节变模糊,而且妨碍对图像中目标的分析,对后续的高级图像处理造成干扰,如图像拼接、目标检测等。
现存难点
- 图像细节保留:在消除蜂窝伪影的过程中,保留图像细节至关重要。现有方法可能在消除蜂窝伪影的同时导致图像细节丢失。
- 鲁棒性:对于不同的光纤束,或者是同一个光纤束在安装过程中,蜂窝图案可能会发生平移或旋转变化。现有方法在处理这种变化时表现出较低的鲁棒性。
- 数据量需求:深度学习方法需要大量的地面真实数据集进行训练,但在纤维束成像中,获取无伪影的图像数据集困难,这限制了深度学习方法在纤维束成像中的应用。
- 通用性:大部分方法针对特定光纤束模型进行训练,在应用于不同光纤束模型时可能存在性能下降的问题。
解决问题
- 该方法对光纤束的重组或新使用偶尔产生的光纤核心位置的变化具有鲁棒性。
- 使用蜂窝伪影生成方案,在获取足够数据量的同时减少了硬件负担。
- 引入了两种质量指标,以定量评估蜂窝图案去除效果。
- 所提出的框架HAR-CNN通过卷积神经网络(CNN)提供了从原始光纤束图像到无伪影图像的端到端映射,端到端映射允许立即恢复无蜂窝的图像,而不需要对它们自己的蜂窝模式进行任何预处理,例如,获取光纤芯的数量和位置。
具体方法
所提出的框架采用卷积神经网络来去除蜂窝状伪影。HAR-CNN算法包括三个卷积层,用于图像恢复,它的体系结构类似于超分辨率的CNN(SRCNN)。
Contribution
合理。本文的主要贡献是提供了一种基于CNN的蜂窝伪影去除方法,可广泛用于光纤束成像。蜂窝模式合成简化了大量人工数据集的获取过程。此外,在性能方面,与传统方法相比,本文提出的模型在蜂窝图案去除和细节保存方面有显著的提高,并且该方法对光纤束的重组或新使用偶尔产生的光纤束核心位置的变化具有鲁棒性。