Analysis
一道简单的递推题。首先k条弦最多把圆分成k+1份,设f[k]为有2k个点时的方案数,当k<2时f[k]显然为1,令这k个点在圆上逆时针排列的顺序为a1,a2,...a2k,那么考虑a1所在的弦,它将剩余2k-2个点分为两部分,则由乘法原理方案数为f[j]*f[k-j-1](0<=j<=k-1),故f[k]=sum(f[j-2]*f[2k-j](0<=j<=k-1))。
Accepted Code
#include<iostream>
using namespace std;
int main()
{
long long f[50];
int i,j,n;
cin>>n;
f[0]=f[1]=1;
for(i=2;i<=n;i++)
{
f[i]=0;
for(j=0;j<i;j++)
f[i]+=f[j]*f[i-j-1];
}
cout<<f[n]<<" "<<n+1<<endl;
return 0;
}