说明feistel解密是feistel加密的逆过程

本文详细阐述了Feistel网络的加密与解密过程,并通过数学推导验证了解密过程确实是加密过程的逆过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 加密过程是:明文m = LE0||RE0,进行n轮迭代。

按下列规则计算LEn||REn,1≤i≤n,轮函数为F

LEi = REi-1

REi = LEi-1⊕F(REi-1,Ki)

进行n 轮迭代运算后,得LEn和REn,输出密文c = REn||LEn

2. 解密过程与加密过程采用相同的算法:密文分组c = REn||LEn = LD0||RD0

按下述规则计算LDn||RDn,1≤i≤n,轮函数为F

LDi = RDi-1

RDi = LDi-1⊕F(RDi-1,Kn-i+1),

进行n 轮迭代运算后,得LDn和RDn,输出明文m = RDn||LDn

3. 这里只要证明RDn =LE0和LDn =RE0即可。显然,LD0= REn且RD0 = LEn,根据加、解密规则,有 

LD1 = RD0 = LEn = REn-1,RD1 =LD0⊕F(RD0,Kn) = REn⊕F(LEn,Kn) = LEn-1 

LD2 = RD1 = LEn-1 = REn-2,RD2 = LD1⊕F(RE1,Kn-1) = REn-1⊕F(LEn-1,Kn-1) = LEn-2 

以此推到下去,有:

LDn-1 = RDn-2 = LE2 = RE1,RDn-1 = LDn-2⊕F(RDn-2,K2) = RE2⊕F(LE2,K2) = LE1 

LDn= RDn-1 = LE1 = RE0,RD= LDn-1⊕F(RDn-1,K1)  = RE1⊕F(LE1,K1) = LE0

这就验证了feistel解密是feistel加密的逆过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值