题目:
过程:
HY 同学直接讲了,所以理解了以后 AC;
第一次在CF上面做题,然后CE了两次,AC;
解题:
首先考虑什么样的序列才能够被整整地删掉:
当然是像“山”一样的序列啦!(单增 -> 单减)
定义 f [ i ] [ j ] 为 删完 左边界为 i 有边界为 j 的最大 Val;
然而并不是所有的区间 [ i , j ] 都是“山”一样的序列:
所以考虑定义 shen [ i ] [ j ] ,表示要将某一个区间 删成 一个单调递增的序列所获得的最大 Val 。
并且考虑定义 jian [ i ] [ j ] ,表示要将某一个区间 删成 一个单调递减的序列所获得的最大 Val 。
那么容易得到:
1、枚举断点 k,内部松弛:f [ i ] [ j ] = f [ i ] [ k ] + f [ k + 1 ] [ j ];
2、枚举断点 k,拼凑,用一个单增和单减的序列拼凑成一个“山”,然后就可以对这个整段序列进行 删光 操作于是就得到 V [ len(山)],所以得到:
f [ i ] [ j ] = shen [ i ] [ k ] + jian [ k ] [ j ] + V [ len ];
那么如何求得 len 的值呢?
首先“山”的长度一定是增序列和降序列组成的,分别求长度:
增序列:W [ k ] - W [ i ] + 1;
减序列:W [ j ] - W [ k + 1 ] + 1;
由于是“山”,W [ k + 1 ] = W [ k ] + 1;
移项得到减序列:W [ j ] - W [ k ];
所以 len (山)= W [ k ] - W [ i ] - W [ j ] + W [ k ] + 1;
注意:W [ i ] <= 1e9,极有可能炸 int,所以用 long long 存,然后判断如果小于 0,就不进行更新,因为这样是毫无意义的,像:
直接 continue;
那么 shen [ i ] [ j ],jian [ i ] [ j ] 如何更新呢?
由于删的过程可以由某一段全部删完操作然后将某一段删成单减的组成 ——
所以说可以枚举断点 k,用 f [ i + 1 ] [ k - 1 ] + shen [ k ] [ j ] 更新;
同理 jian [ i ] [ j ];
这样我们就只用考虑如何枚举合法的断点 k 了;
对于 shen 数组,我们能够进行删除子序列来得到一个“山”的合法“山峰”就是:
当 W [ k ] == W [ i ] + 1 时,将 [ i + 1 , k - 1 ] 删掉可以得到一个山的一部分,另一部分用前面求过的;
好了,通过三个数组互推,最后得到了删除整个区间所得到的最大 Val;
那么答案呢?怎么将 f [ i ] [ j ] 用起来呢?
考虑定义 ans [ i ],表示对前 i 个 W 进行处理所得到最大值;
方程显然,枚举断点 j:
ans [ i ] = maxx ( ans [ i ] , ans [ j - 1 ] + f [ j ] [ i ] ) ;
但是有人(我)发问了:用 f 数组推得的 ans 的本质不就是将前 i 个 W 全部删完的值吗?但很明显我可以不删某一些 W 啊?
实际上只需要在每一次循环时加一个:ans [ i ] = ans [ i - 1 ] 就完全 Ok 了;
为什么呢?
因为如果这次对考虑删除 W [ i ] 是比只处理前 i - 1 个 W 差的话,我就不会考虑删除 W [ i ];所以这是 ans 的本质不再单独是删完,而是由许多个删除-不删除-删除的段落组成的;
完毕,代码:
#include <cstdio>
const int N = 1000 + 5 ;
// using namespace std ;
int f [ N ] [ N ] , shen [ N ] [ N ] , jian [ N ] [ N ] , V [ N ] , W [ N ] , ans [ N ] , n ;
int maxx ( int a , int b ) {
return a > b ? a : b ;
}
int main ( ) {
scanf ( "%d" , & n ) ;
for ( int i = 1 ; i <= n ; i ++ )
scanf ( "%d" , & V [ i ] ) ;
for ( int i = 1 ; i <= n ; i ++ )
scanf ( "%d" , & W [ i ] ) ;
for ( int l = 1 ; l <= n ; l ++ ) {
for ( int i = 1 ; i + l - 1 <= n ; i ++ ) {
int j = i + l - 1 ;
if ( i == j ) {
shen [ i ] [ j ] = 0 , jian [ i ] [ j ] = 0 ;
f [ i ] [ j ] = V [ 1 ] ;
continue ;
}
shen [ i ] [ j ] = - 1 << 28 , jian [ i ] [ j ] = - 1 << 28 ;
for ( int k = i + 1 ; k <= j ; k ++ )
if ( W [ i ] + 1 == W [ k ] )
shen [ i ] [ j ] = maxx ( shen [ i ] [ j ] , f [ i + 1 ] [ k - 1 ] + shen [ k ] [ j ] ) ;
else if ( W [ i ] - 1 == W [ k ] )
jian [ i ] [ j ] = maxx ( jian [ i ] [ j ] , f [ i + 1 ] [ k - 1 ] + jian [ k ] [ j ] ) ;
f [ i ] [ j ] = - 1 << 28 ;
for ( int k = i ; k < j ; k ++ )
f [ i ] [ j ] = maxx ( f [ i ] [ j ] , f [ i ] [ k ] + f [ k + 1 ] [ j ] ) ;
for ( int k = i ; k <= j ; k ++ ) {
long long len = W [ k ] - W [ i ] - W [ j ] + W [ k ] + 1 ;
if ( len >= 0 && len <= n )
f [ i ] [ j ] = maxx ( f [ i ] [ j ] , shen [ i ] [ k ] + jian [ k ] [ j ] + V [ len ] ) ;
}
}
}
for ( int i = 1 ; i <= n ; i ++ ) {
ans [ i ] = ans [ i - 1 ] ;
for ( int j = 1 ; j <= i ; j ++ )
ans [ i ] = maxx ( ans [ i ] , ans [ j - 1 ] + f [ j ] [ i ] ) ;
}
printf ( "%d" , ans [ n ] ) ;
return 0 ;
}