正态性检验

本文介绍Shapiro-Wilk检验,一种用于检查数据是否符合正态分布的有效方法,特别适用于小样本(3≤n≤50)的情况。通过R语言中的shapiro.test()函数进行操作,当返回的P值小于0.05时,数据被认为不符合正态分布。然而,对于大样本,即使与正态分布有细微差别也可能导致拒绝原假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Shapiro-Wilk检验

Shapiro-Wilk检验用来检验是否数据符合正态分布,检验只适用于小样本场合(3≤n≤50)。 R语言中的Shapiro-Wilk检验是使用函数shapiro.test(x)实现。其中X为向量,其返回的P-values小于0.05可以拒绝X符合正态分布。但是,检验正态性不能只有一个检验方法。样本量大的话,只要样本和正态分布有一个很小的差别,Shapiro就会拒绝。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值