交叉验证

from sklearn.model_selection import train_test_split
#Whole dataset
#切分:切分时先进行洗牌的操作再切分
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
print("Number transactions train dataset: ",len(X_train))
print("Number transactions test dataset: ",len(X_test))
print("Total number of transactions: ",len(X_train)+len(X_test))
#Undersampled dataset
X_train_undersample,X_test_undersample,y_train_undersample,y_test_undersample=train_test_split(X_undersample,
                                                                                               Y_undersample,
                                                                                               test_size=0.3,
                                                                                               random_state=0)
print(" ")
print("Number transactions train dataset: ",len(X_train_undersample))
print("Number transactions test dataset: ",len(X_test_undersample))
print("total number of transations: ",len(X_train_undersample)+len(X_test_undersample))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值