感知机
感知机应该属于机器学习算法中最简单的一种算法,其原理如图,通过找到一条线对于黄,蓝2个样本集合进行分类,这条特殊的线在二维平面可以看为一条直线,在三维平面看为一个切割平面,在四维看为一个划分样本的超平面,以此类推,在高维中这条特殊的线就是一个超平面。
找到这个超平面,感知机算法就算完成。
我们来学习一个函数sign(x):
当wx+b大于0的时候,sign(wx+b)为+1(取对应y为+1),表示该样本点为正实例,当wx+b小于0的时候,表示该样本点为负实例(取对应y为-1)。
如果该样本点为误分类的点,y(wx+b)小于0
利用随机梯度下降算法更新参数W,b
以此类推,直到所有样本点的y(wx+b)大于0
记录该W,b 得出超平面Wx+b,该平面就是我们所找的。
参考实现代码
#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):
'''
加载Mnist数据集
:param fileName:要加载的数据集路径
:return: list形式的数据集及标记
'''
print('start to read data')
# 存放数据及标记的list
dataArr = []; labelArr = []
# 打开文件
fr = open(fileName, 'r')
# 将文件按行读取
for line in fr.readlines():
# 对每一行数据按切割福','进行切割,返回字段列表
curLine = line.strip().split(',')
# Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
if int(curLine[0]) >= 5:
labelArr.append(1)
else:
labelArr.append(-1)
#存放标记
#[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
#[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
dataArr.append([int(num)/255 for num in curLine[1:]])
#返回data和label
return dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):
'''
感知器训练过程
:param dataArr:训练集的数据 (list)
:param labelArr: 训练集的标签(list)
:param iter: 迭代次数,默认50
:return: 训练好的w和b
'''
print('start to trans')
dataMat = np.mat(dataArr)
labelMat = np.mat(labelArr).T
m, n = np.shape(dataMat)
w = np.zeros((1, np.shape(dataMat)[1]))
b = 0
h = 0.0001
for k in range(iter):
for i in range(m):
if -1 * yi * (w * xi.T + b) >= 0:
w = w + h * yi * xi
b = b + h * yi
print('Round %d:%d training' % (k, iter))
return w, b
def test(dataArr, labelArr, w, b):
'''
测试准确率
:param dataArr:测试集
:param labelArr: 测试集标签
:param w: 训练获得的权重w
:param b: 训练获得的偏置b
:return: 正确率
'''
print('start to test')
dataMat = np.mat(dataArr)
labelMat = np.mat(labelArr).T
m, n = np.shape(dataMat)
errorCnt = 0
for i in range(m):
xi = dataMat[i]
yi = labelMat[i]
result = -1 * yi * (w * xi.T + b)
if result >= 0: errorCnt += 1
accruRate = 1 - (errorCnt / m)
return accruRate
if __name__ == '__main__':
#获取当前时间
#在文末同样获取当前时间,两时间差即为程序运行时间
start = time.time()
#获取训练集及标签
trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
#获取测试集及标签
testData, testLabel = loadData('../Mnist/mnist_test.csv')
#训练获得权重
w, b = perceptron(trainData, trainLabel, iter = 30)
#进行测试,获得正确率
accruRate = test(testData, testLabel, w, b)
#获取当前时间,作为结束时间
end = time.time()
#显示正确率
print('accuracy rate is:', accruRate)
#显示用时时长
print('time span:', end - start)