- 博客(20)
- 收藏
- 关注
原创 论文阅读:Fine-grained depression analysis based on Chinese micro-blog reviews 基于中文微博评论的细粒度抑郁分析
抑郁症是现代社会一个普遍而棘手的问题,它可能导致自杀的想法和行为。近年来,以Twitter或Reddit等社交媒体的帖子为基础,分析抑郁症或自杀的研究取得了很大进展。然而,大多数研究都集中在英语社交媒体上,且抑郁预测通常被形式化为存在或不存在。在本文中,我们构建了一个基于中文微博评论的人工标注数据集,该数据集包含6100条人工标注的微博。我们的数据集包括两个细粒度的任务,即抑郁程度预测和抑郁原因预测。
2024-04-24 17:14:49 1566
原创 论文阅读:Semantic Similarity Models for Depression Severity Estimation 抑郁症严重程度估计的语义相似度模型
抑郁症在全世界构成了一个严重的公共卫生问题。然而,公共卫生系统发现和诊断病例的能力有限。在这方面,社交媒体的广泛使用开辟了大规模获取公共信息的途径。通过利用这些用户生成的社交媒体内容,计算方法可以作为快速筛选(抑郁症)的支持工具。基于个人的社交媒体写作,本文提出了一种有效的语义管道来研究他们的抑郁严重程度。我们选择测试用户句子(测试集),在与抑郁症状和严重程度相对应的代表性训练句子(训练集)的索引上生成语义排名。然后,我们使用这些排名结果中的句子作为预测症状严重程度的证据。
2024-04-18 10:17:16 949 1
原创 论文阅读:Revealing traces of depression through personal statements analysis in social media
抑郁症是一种常见且非常重要的健康问题,严重影响着人们的日常生活。最近,几位研究人员探索分析了用户在社交媒体上生成的数据,以检测和诊断个体的抑郁迹象。在这方面,我们考虑了社交媒体中的抑郁检测任务,认为短语中包含个人陈述的词语(即以使用第一人称单数代词为特征的短语)对于揭示抑郁迹象具有特殊价值。首先,我们评估了社交媒体上个人陈述对抑郁症检测的价值。其次,我们采用了一种自动方法,通过特征选择方法和词加权方案来强调个人陈述。最后,我们将手头的任务作为早期检测问题来解决,其目的是尽可能多地检测抑郁迹象。
2024-04-09 17:05:10 690 1
原创 论文阅读:Early depression detection in social media based on deep learning and underlying emotions
抑郁症是对公共健康的挑战,经常与残疾有关,也是导致自杀的原因之一。许多抑郁症患者使用社交媒体获取信息,甚至谈论他们的问题。一些研究已经提出在这些网络环境中检测潜在的抑郁症用户。然而,效果不理想仍然是实际应用的障碍。因此,我们提出了一种基于卷积神经网络的社交媒体早期抑郁症检测方法,该方法结合了与上下文无关的词嵌入和早晚期融合方法。将表情符号中编码的潜在情绪的重要性考虑在内,对这些方法进行了实验评估。
2024-03-15 20:52:22 1223 1
原创 论文阅读:Identifying adolescents at risk for depression: Assessment of a global prediction model
青少年早期抑郁风险识别评分(IDEA-RS)已经在四大洲的样本中进行了外部评估,但北美缺乏。我们这里的目的是评估在大烟山研究(GSMS)中,IDEA-RS对美国青少年群体样本中未来严重抑郁症(MDD)发作的预测性能。我们应用巴西开发的原始IDEA-RS模型的截距和权重,为GSMS的每个参与者生成一个15岁时的个人概率(N=1029)。然后,我们使用简单的、病例混合校正和改装的模型,评估了这些预测对19岁时MDD诊断的效果。此外,我们比较了优先考虑父母或青少年提供的信息对性能的影响。
2024-03-10 18:24:40 1022 1
原创 Python爬虫案例:从39问医生网爬取口腔科的在线问答记录(单轮问答)
本次实验爬取39问医生网中口腔科分类下的所有在线单轮问答记录,每页32条,共100页,总数据量为3200条,最终结果以excel格式保存。
2023-12-25 23:48:48 1228 1
原创 论文阅读:Unified Named Entity Recognition as Word-Word Relation Classification
到目前为止,命名实体识别(NER)涉及三种主要类型,包括平面的(flat)、重叠的(overlapped)(也即嵌套)和不连续的(discontinuous)NER,它们大多是单独研究的。最近,人们对统一NER越来越感兴趣,即用一个模型同时处理上述三种工作。目前表现最好的方法主要包括基于跨度的(span-based)模型和序列到序列的(sequence to sequence)模型,然而不幸的是,前者只关注边界识别,后者可能存在暴露偏差。
2023-12-03 16:29:27 396 1
原创 论文翻译:Large language models for oncological applications
诸如ChatGPT之类的大型语言模型已经引起了公众和科学界的关注。这些模型可能支持肿瘤学家的工作。肿瘤学家应该熟悉大型语言模型,以利用它们的潜力,同时意识到潜在的危险和局限性。
2023-11-23 19:13:02 139 1
原创 论文翻译:Large language models in medicine 医学中的大语言模型
大型语言模型(LLM)可以响应自由文本查询,而无需经过相关任务的专门培训,这引起了人们对其医疗领域应用的兴奋和担忧。ChatGPT是一种生成型人工智能聊天机器人,通过对LLM进行复杂的微调而产生,其他工具也通过类似的过程被开发出来。在这里,我们概述了ChatGPT等LLM应用程序是如何开发的,并讨论了如何在临床环境中利用它们。我们考虑LLM的优势和局限性,以及它们在医学领域提高临床、教育和研究工作的效率和有效性方面的潜力。
2023-11-21 16:55:12 961
原创 论文翻译:SC-Dynamic R-CNN: A Self-Calibrated Dynamic R-CNN Model for Lung Cancer Lesion Detection
肺癌具有复杂的生物学特性,恶性程度高。它一直是癌症中的头号“杀手”,威胁着人类的生命和健康。肺癌的诊断和早期治疗仍需改进和进一步发展。由于其高发病率和高死亡率,迫切需要一种准确的诊断方法。然而,现有的计算机辅助检测(CAD)系统流程复杂,检测精度低。为了解决这一问题,本文提出了一种基于动态区域卷积神经网络(dynamic R-CNN)的两阶段检测方法。我们将肺癌分为鳞状细胞癌、腺癌和小细胞癌。
2023-11-10 17:01:29 170 1
原创 论文翻译:Position-Enhanced Visual Instruction Tuning for Multimodal Large Language Models
最近,多模态大语言模型(MLLMs)取得了巨大成功,它使得大语言模型(LLMs)能通过视觉指令微调来理解图像。然而,现存的视觉指令微调技术只使用图像-语言指令数据来对齐语言和图像模态,无法实现更加细粒度的跨模态对齐。在本篇论文中,我们提出了位置增强视觉指令调优技术(PVIT),通过整合一个额外的区域级视觉编码器来扩展MLLMs的功能。这项整合能促使MLLM形成对图片的更详细的理解。除此之外,为了有效地实现LLM和视觉模块的细粒度对齐,我们还设计了多种数据生成策略,用来构建一个“图像-区域-语言”指令数据集。
2023-10-15 21:49:03 266 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人