简谈密码学中常用的模运算和欧几里得算法

本文介绍了Affine Cipher,一种基于模运算的密码学方法,并详细探讨了模运算的定义和性质。接着阐述了最大公约数(GCD)的概念,特别是当GCD为1时,两个数互质的性质。欧几里得的GCD算法通过递归计算求得最大公约数,文中通过实例展示了该算法如何应用于RSA密钥生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Affine Cipher

Affine Cipher是基于模运算的一种cipher,其公式为:
Y = aX + b mod m
Secret key: (a, b)

为什么这cipher生效呢?

模运算

定义模运算符
a mod n
等于a除以n时的余数。
使用“同余”这个术语
a ≡ b (mod n)
举个例子
100 ≡ 34 (mod 11)
也可以写成
100 ≡ 1 (mod 11)
100除以11余1

b被称为a mod n的残差,因为它可以表示为:a = qn + b。
举个例子:
-12 ≡ -5 ≡ 2 ≡ 9 (mod 7)

定义Zn ={0,1,…,n-1}
If a+b ≡ a+c (mod n) then b ≡ c (mod n)

but if ab ≡ ac (mod n) then b ≡ c (mod n) only if a is relatively prime to n。
举个例子:
7 x 11 ≡ 7 x 5 (mod 6)  11 ≡ 5 (mod 6)
– 9 x 3 ≡ 9 x 5 (mod 6) but 3 ! ≡ 5 (mod 6)

那么什么是互质呢?

Greatest Common Divisor (GCD) 最大公约数

a和b的GCD (a,b)是能同时除以a和b的最大数,像 GCD(60,24) = 12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值