自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(95)
  • 收藏
  • 关注

原创 今天一定要搞懂P,NP,NPC,NP-hard

NPC问题:人们想表达一个问题不存在多项式的高效算法时应该说它“属于NPC问题,它得是一个NP问题;然后,所有的NP问题都可以约化到它。时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。NP-hard问题: 比所有的NP问题都难的问题,不一定是问题。P问题: 多项式时间内解决。NP问题:多项式时间内验证。时间与输入规模的关系。

2024-08-31 04:35:40 104

原创 远程用服务器运行python程序步骤

把 代码文件 link 到 container 和 image。

2022-12-13 00:16:17 294

原创 overleaf插入参考文献

如何使用overleaf插入参考文献

2022-06-16 18:07:12 9026 1

原创 pandas 错误 ValueError: ‘Lengths must match to compare‘

在dataframe中找到某个值,并最终输出其对应的其他某个列的值https://chehongshu.blog.csdn.net/article/details/107623238错误find_series = df[df['obj']==i]['solution']print(find_series.values[0])#输出obj列等于i的solution列的第0行的值提示错误ValueError: (‘Lengths must match to compare’, (907,), (2

2022-04-25 22:02:56 6964

原创 pycharm版本控制git上传到github

1 VCS中选择enable version control integration, 这是vcs变成了git2 在file–>setting–>version control–>github中 登录github个人账号3 git–>github–>share project on github然后就可以进行push commit等操作了

2022-03-16 18:44:26 432

原创 python赋值问题

pop = [[1,2],[3,4]]for parent in pop: child = [5,6] parent = child print(parent)print(pop)这样输出结果为parent [5, 6] [5, 6]pop [[1, 2], [3, 4]]如果改为以下pop = [[1,2],[3,4]]for parent in pop: child = [5,6] parent[:] = child print(pa

2021-09-01 21:49:48 112

原创 python range()和xrange()的区别

range()直接生成一个listxrange()每次生成一个数字,不是list,更适合非常大的范围

2021-05-26 03:32:03 124

原创 pandas循环写入多个sheet

file_path = 'data.xlsx'writer = pd.ExcelWriter(file_path)for i in range(5): sh = 'sheet{}'.format(i) df = pd.pd.DataFrame(data)# 假设这里每次更新不同的df df.to_excel(writer,sheet_name=sh) writer.save()

2021-05-26 03:29:28 2216 4

原创 添加和更新Gurobi学术版license

1下载好gurobi后,在gurobi注册学生账号,申请学术版证书,在下证书界面找到下面图片,根据提示运行grbgetkey 40bf3e1e-bbdc-11eb-8088-0242ac130002运行后会提示将证书保存到一个路径,例如我保存到D:\Gurobilicense\gurobi.lic2 设置环境变量用户变量:GUROBI_HOME C:\gurobi911\win64系统变量:GUROBI_HOME C:\gurobi911\win64系统变量:GRB_LICENSE_

2021-05-25 17:19:41 3043

原创 python+gurobi 带时间窗带容量限制的路径规划 cvrptw

gurobi 带时间窗带容量限制的路径规划 cvrptwimport numpy as nprnd = np.randomrnd.seed(0)import randomrandom.seed(0)M=1000# datanbX = 5source = 0 #出发点puits = nbX #回去点,共有nbx-1个顾客,2个车站# setsV = range(3) #vehiclesX = list(range(nbX)) #clientsU = [(x1, x2)

2021-03-22 00:20:42 1773 1

原创 keras简单实现神经网络

import kerasimport numpy as npimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers import Dense# from keras.optimizers import adamx_data=np.linspace(-0.5,0.5,200...

2020-04-27 19:12:47 323

原创 深度学习优化方法sgd和momentum

优化框架https://zhuanlan.zhihu.com/p/322306231、计算关于当前参数的梯度2、计算历史梯度的一阶动量和二阶动量3、计算当前时刻下降梯度4、更新下一个参数,用当前参数减去第三步计算的值。sgd方法下降梯度直接就是用的第1步的结果。但是如果学习率大,一步会迈的太远,容易震荡https://blog.csdn.net/tsyccnh/article/de...

2020-04-11 14:41:50 618

原创 神经网络dropout

对损失函数进行优化,有时会造成过拟合现象,降低模型的泛化能力。即模型在训练集上表现好,而在测试集上表现差。防止神经网络过拟合现象的方法有增加正则化项、dropout和调节学习率等方法。本节为防止过拟合,设置dropout,限制模型的复杂度。在训练时,以概率p随机去掉部分神经元,作用于小批量数据,每次的训练的神经网络是原水神经网络的子集,相当于提供了一种轻量级的bagging方法。在测试时,每个神经...

2020-03-20 12:44:55 346

原创 smote算法

解决样本不平衡问题主要有以下几种方法,但是由于时间紧迫,大概浏览了一下,决定使用smote算法https://zhuanlan.zhihu.com/p/78508502smote算法原理和流程https://blog.csdn.net/niutingbaby/article/details/96104814smote python包实现https://pypi.org/project/i...

2020-03-13 21:48:18 913

原创 数据映射到任意区间

参考链接:https://blog.csdn.net/willduan1/article/details/80448493

2020-03-10 12:42:41 1084

原创 k折交叉验证

将数据集分成k分k-1份用来训练,1份用来测试,遍历所有数据程序:kfold = StratifiedKFold(n_splits=number, random_state=1).split(x, y)for k, (train, test) in enumerate(kfold):#k表示k折,train和test是索引,在训练集和测试集时会保证每次标签值分配均匀,避免出现一个训练集或...

2020-03-10 12:40:22 195

原创 回归预测三大评价指标MAE RMSE MAPE

https://www.laugh12321.cn/2019/01/02/evaluation_index_with_Linear_Regression/#

2020-03-02 16:42:54 2914

原创 gbdt梯度下降树和xgboost

参考链接:https://www.cnblogs.com/bnuvincent/p/9693190.html训练好一个弱分类器后,得到损失函数的负梯度,将损失函数的负梯度作为训练下一个弱分类器的标签。将所有弱分类器的和,作为最终结果。...

2020-02-11 11:32:07 762

原创 bagging和boosting

bagging有放回抽样,各分类器之间没有关联例如随机森林boosting分类器的损失是下一个分类器的训练标签,各分类器之前有关联例如xgboost

2020-02-10 15:10:08 158

原创 分类树和回归树

对于树重要的是要找到选择节点(从多个属性中选择一个)和节点划分值(一个属性的某个取值),之后把数据集划分成n个部分,再重复进行下去对于分类树,划分依据是信息熵、基尼系数对于回归树,划分依据是mse,取一条路径上的y的平均值作为预测值...

2020-02-09 15:11:07 433

原创 python 线性回归

https://blog.csdn.net/hubingshabi/article/details/80172608

2020-01-09 14:17:25 158

原创 机器学习线性回归评价指标

https://www.laugh12321.cn/2019/01/02/evaluation_index_with_Linear_Regression/

2019-12-30 17:26:36 559

原创 参数调优

参考链接:原理介绍:https://www.jianshu.com/p/55b9f2ea283b随机森林参数调优:https://www.cnblogs.com/pinard/p/6160412.htmlhttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html调参其...

2019-12-29 21:21:46 259

原创 特征选择

参考链接:特征选择:https://zhuanlan.zhihu.com/p/37310887https://www.zhihu.com/question/28641663关于多重共线性:https://zhuanlan.zhihu.com/p/56793236在得到数据之后主要会进行以下操作1、需要对数据进行异常值、缺失值的筛选2、得到将数据表示成机器能识别的数字3、对于单个特...

2019-12-29 17:04:20 306

原创 随机森林

参考文章:https://blog.csdn.net/zjuPeco/article/details/77371645基本原理两个随机抽样:1数据集又放回随机抽样,生成多个训练集(bootstrap)2对每个数据集的特征随机抽样得到的每个样本集采用决策树的划分方法生成多个决策树,不剪枝得到的随机森林对测试集测试,用票选法决定结果特征重要性评估用基尼指数评价程序:imp...

2019-12-29 12:47:54 127

原创 假设检验和方差分析

假设检验:作用:统计学中的等于符号在有随机性参与的数学计算中,理论值和实验取样后算出来的计算值有一定差距,假设检验的用处是告诉你是对的。判断样本与样本,总体与样本的差异是由抽样误差引起的还是本质差别造成的统计推理。原理是先对总体特征做出假设,通过抽样研究的统计推理,对此假设应该被接收还是拒绝做出推断显著性检验定义:统计假设检验的一种,检测科学实验中实验组与对照组之间是否有差异及差异是否显著...

2019-12-16 16:23:06 2946

原创 数据归一化和标准化

原理:https://blog.csdn.net/program_developer/article/details/78637711python库:https://blog.csdn.net/ARPOSPF/article/details/80787353针对的是每列数据,一个维度的数据,不是每行的,不是多维度之间的不涉及距离、方差、协方差运算时,使用z-score效果更好...

2019-12-14 14:31:09 234

原创 pca主成分分析

方差越大,数据越分散,数据的某个特征维度上越分散,该特征越重要协方差为0,不相关将一组N维向量降到K维,选择K个单位正交基,原始数据变换到这组基上时,各特征两两协方差为0,特征的方差尽可能大协方差矩阵https://blog.csdn.net/a8039974/article/details/81285238不同维度之间的协方差matlab协方差矩阵计算方法1:mysample=f...

2019-12-13 22:29:31 194

原创 数据描述

1数据字典2数量3缺失数据4异常值5数据类型6特征7特征相关性回归处理流程去除其他特征,或其他特征保持不变,这个特征对OutPut的影响计算回归系数选择重要特征训练模型参数计算校正决定系数计算f-test计算p-value逐个加上特征排除多重共线性画出Q-Q plot,计算偏度和斜度计算t-statistic lower bound upper bound...

2019-11-26 21:43:15 317

原创 时间序列处理(待更新)

周期计算预测方法:时域分析频域分析

2019-11-13 22:23:30 224

原创 高斯过程/贝叶斯回归

线性回归先验和后验概率先验:未知条件下,根据直觉对事情的猜测后验:事情已经发生,这个事情由某个因素引起的可能性的大小。由结果推原因。可以表示为p(原因|结果)贝叶斯回归...

2019-11-11 21:09:57 1600

原创 最短路径算法

贪心算法:在当前步骤下最优狄杰斯特拉算法图中,找出一个点到其他所有点到最短路径。选中点为0,其他点为无穷大。在unvisited中的每个点到其他连着的所有点的距离,并更新这个距离。直到访问过所有点。两个循环原点为vs每个点到原点的距离为dist[m]used[i]=1访问过used[i]=0没有访问过for(int i=0;i<vertexnum;i++){ j=0; ...

2019-10-25 20:56:29 213

原创 行测题型(积累)

1、工程问题时间、效率、总量2、定义强调看选项中是否完全符合题干中的定义3、

2019-10-03 16:05:54 318

原创 c++引用 指针 const

1、const定义常量const int valuename=value;2、const与指针指针常量int * const p;指针的地址不允许修改,值可以修改常量指针const int *p;值不能修改,地址可以修改指向常量的指针常量const int * const p;3、const与函数(1)const修饰函数参数(a)函数参数为常量指针,指针所指的值不...

2019-09-28 14:20:49 239

原创 c++ static关键字

参考链接:https://blog.csdn.net/keyeagle/article/details/6708077https://blog.csdn.net/tr_ainiyangyang/article/details/80965574http://c.biancheng.net/cpp/biancheng/view/209.htmlhttps://blog.csdn.net/lms...

2019-09-13 12:21:44 167

原创 uml 面向对象设计 设计模式

参考链接:https://www.cnblogs.com/jiangds/p/6596595.html一、uml用例图:谁用软件和软件的功能类图:类之间的关系有:泛化=实现>组合>聚合>关联>依赖泛化:继承实现:接口组合:整体对象可以 控制成员对象生命周期聚合:成员对象是整体对象的一部分关联:包含依赖:使用一个类对象作为另一个类的成员函数的参数对象图...

2019-09-11 16:19:15 385

原创 python下划线

1、_val,不是语法规定,仅供类内部使用2、__val,前面两个下划线,防止子类重写3、init,特殊方法

2019-09-10 14:37:17 150

原创 网络基础

1、网络通信一台电脑的数据和另一台数据共享2、发送消息需要的参数如何保证我的数据可以发送到另一个人上模拟写信,需要知道地址发送数据需要知道IP地址(确定发给那个人)、端口号(确定发到哪个程序上)端口号有知名端口号和动态端口号3、socket虚拟机改成桥接,是否处于一个网段udp不可靠、无连接、数据不分段发送数流程创建套接字、发送、关闭接收数据创建套接字、绑定IP和端口号...

2019-09-06 20:54:45 137

原创 static

局部变量只在代码块{}内有效代码块内的static可累加,不加static不累加全局变量子函数使用后可以 变化

2019-09-01 15:57:15 210

原创 memset

void *memset(void *str, int c, size_t n)str:地址c:特定值n:字节数newchar* num=new char[n+1]struct Node{int val;Node* next;Node(int x):val(x),next(nullptr){};};Node* p=new Node(val);...

2019-09-01 13:33:00 1423

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除