暑期项目实训7.16 论文复现

        弄懂了struc2vec算法:

        首先要知道该算法会生成一个k层的完全图,用来最后的时候在图上行走得到点序列作为上下文进行聚类。

        1.首先根据节点的结构相似性,反映在k步内邻居节点信息上,求出f_{k}(u,v),作为第k层u点和v点之间的相似度。

                                                     

                                        

 

                                           

 

        2.构造多层的带权有向图 M,就是上面提到的k层完全图,其中每层都是带权无向图,层与层之间是有向的,作为一会儿获得上下文的基础。

        3.在M中随机游走,构造上下文序列,这个随机是根据权值确定的,权值是根据第一步中的相似度获得的。

        4.用word2vec算法中给的skip-gram训练序列,得到每个节点的表示,从而达到图嵌入的效果。

        在经过图嵌入后得到X三维张量,X第一维为6,然后送入6个DARNN中的encoder中特征提取。同时将输出的隐藏层状态连同VG图上计算的CI一同输入进6个decoder中,作为输出。

        最近就是用代码实现了上述的几个部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值