弄懂了struc2vec算法:
首先要知道该算法会生成一个k层的完全图,用来最后的时候在图上行走得到点序列作为上下文进行聚类。
1.首先根据节点的结构相似性,反映在k步内邻居节点信息上,求出,作为第k层u点和v点之间的相似度。
2.构造多层的带权有向图 M,就是上面提到的k层完全图,其中每层都是带权无向图,层与层之间是有向的,作为一会儿获得上下文的基础。
3.在M中随机游走,构造上下文序列,这个随机是根据权值确定的,权值是根据第一步中的相似度获得的。
4.用word2vec算法中给的skip-gram训练序列,得到每个节点的表示,从而达到图嵌入的效果。
在经过图嵌入后得到X三维张量,X第一维为6,然后送入6个DARNN中的encoder中特征提取。同时将输出的隐藏层状态连同VG图上计算的CI一同输入进6个decoder中,作为输出。
最近就是用代码实现了上述的几个部分。