CloudCompare——点云高斯滤波

1. 原理概述

   高斯滤波利用了高斯函数经傅里叶变换后仍具有高斯函数的特性。令指定区域的权重为高斯分布,从而将高频的噪声点滤除。具体是将某一数据点与其前后各 n n n个数据点加权平均,那些远大于操作距离的点被处理成固定的端点,这有助于识别间隙和端点。由于高斯滤波平均效果较小,在滤波的同时,能较好地保持数据原貌,因而常被使用。

2. 实现流程

   点云高斯滤波是一种在三维点云数据上应用高斯滤波器的技术。在点云高斯滤波中,每个点的邻域被加权平均,以产生平滑的点云,权重由一个高斯分布函数计算。在三维空间中函数形式为

G = e − d 2 2 σ 2 (1) G=e^{-\frac{d^2}{2\sigma^2}}\tag{1} G=e2σ2d2(1)

   式中, d d d为点云中每个点到邻域点的距离; σ σ σ为高斯函数的标准差。

   对于每个点,高斯滤波器将其邻域内的所有点乘以一个对应的高斯权重,然后将其加权平均。过程公式为:

F ( x , y , z ) = ∑ i = 1 N p i G ( ∣ ∣ p i − p o ∣ ∣ ) ∑ i = 1 N G ( ∣ ∣ p i − p o ∣ ∣ ) (2) F(x,y,z)=\frac{\sum_{i=1}^Np_iG(||p_i-p_{o}||)}{\sum_{i=1}^NG(||p_i-p_{o}||)}\tag{2} F(x,y,z)=i=1NG(∣∣pipo∣∣)i=1NpiG(∣∣pipo∣∣)(2)

   式中, p o p_o po为当前点的坐标值; p i p_i pi为邻域内第 i i i个点的坐标值; N N N为邻域内的点数; G ( p i − p o ) G(p_i-p_{o}) G(pipo)为第 i i i个点的高斯权重,它与第 i i i个点与当前点的距离 p i − p o p_i-p_{o} pipo有关; F ( x , y , z ) F(x,y,z) F(x,y,z)为滤波后点的坐标值。

3. 软件实现

1、找到高斯滤波功能
在这里插入图片描述
2、设置参数
在这里插入图片描述
   选择一个“内核”大小(实际上是球体的半径,在该半径中,将在每个点周围提取最近的邻居以计算平均值)。滤波器越大越强(计算速度越慢…)。

4. 结果展示

滤波前
在这里插入图片描述

滤波后
在这里插入图片描述
差距不够明显??放个明显的图
在这里插入图片描述

5. 相关代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值