2.基于DEEPSEEK API的智能垃圾分类应用:进一步探索相关技术

RAG技术-一种可能的替代或补充

在思考如何让DeepSeek模型掌握垃圾分类知识时,除了微调,我发现RAG也是一个值得考虑的技术路径。

标准的图像识别+分类可能难以应对现实中的复杂情况,例如:

  • 受污染物品: 一个沾满油污的披萨盒,清洗前后可能属于不同类别。
  • 复合材料: 一个由纸和塑料组成的复合包装袋如何分类 ?
  • 需特殊处理物品: 废弃灯管、电池等有害垃圾的处理方式。
  • 地域差异: 同一种物品在不同城市的分类标准可能不同(对该智能垃圾分类系统的功能的一种可能的扩展方向)。

A. RAG工作流程

简单来说,当收到物品描述后,系统不直接让DeepSeek生成答案,而是先从一个专门的“垃圾分类知识库”(可以是一个向量数据库,存储了各种物品的分类规则、处理方法、注意事项等)中检索出最相关的几条信息。然后,将这些检索到的信息和原始的物品描述一起作为上下文提供给DeepSeek,让它基于这些信息来生成最终的分类结果和建议。

  • 触发: 当初步分类结果置信度低,或者VLM描述中包含“污渍”、“混合”、“复合”等关键词,或者用户提供了地理位置信息时,触发RAG流程。
  • 检索: 使用VLM生成的物品描述(或提取的关键信息)作为查询,在专门构建的垃圾分类知识库(Knowledge Base, KB)中检索最相关的规则或说明片段。
  • 增强: 将检索到的上下文信息(如“上海市规定:受污染的纸质餐盒属于干垃圾”)与原始问题(物品描述)结合。
  • 生成: 将增强后的信息作为新的提示(Prompt)输入给微调后的DEEPSEEK模型,要求它基于提供的上下文信息给出最终的分类判断和处理建议。

B. RAG的优势

    1. 知识更新更容易:如果垃圾分类规则变化,理论上只需要更新知识库,而不需要重新微调模型。
    1. 可解释性可能更好:可以看到模型是基于哪些检索到的信息给出的答案,具有说服力。
    1. 处理非常规物品:对于模型未在微调数据中见过的非常规物品,可以人工在知识库中加入相关条目。

通过使用市面上主流的开源大模型对话客户端CheeryStudio中的知识库功能(基于RAG)技术,可以看到大模型在输出回答是参考了知识库里《上海市生活垃圾管理条例》,使回答内容更加具有说服力。


C.知识库的构建

知识库的构建是RAG技术的关键。

  1. 数据来源: 需要收集权威、准确、最新的垃圾分类指南,例如各地政府发布的官方文件、环保机构的规定、专业回收网站的信息等。
  2. 数据处理:
    • 文档加载与切分: 将收集到的文档(PDF, 网页等)加载并切分成小的、语义完整的文本块。
    • 向量化与索引: 使用文本嵌入模型(Embedding Model)将文本块转换为向量,并存储在向量数据库(如ChromaDB, FAISS, Milvus等)中,以便进行高效的语义相似度检索。
    • 知识图谱: 对于结构化程度较高的规则(如地区-物品-类别-处理方式),可以考虑构建知识图谱(使用Neo4j等图数据库),支持更精确的关系查询。
  3. 维护与治理: 知识库需要持续更新以反映政策变化,并进行质量管理。构建和维护一个覆盖广泛、准确可靠、可能还需区分地域的垃圾分类知识库,其工作量不容小觑,需要专门投入资源和流程进行管理 。

目前来看,微调似乎是核心路径,因为它能让模型深度理解垃圾分类的内在逻辑和条件判断。
但RAG可以作为一个非常有价值的补充。比如,对于一些特别具体、更新频繁或需要详细解释的特殊物品处理规则(如各地区的政策更新、特定品牌电池的回收政策),可以通过RAG来提供更精确、最新的信息。甚至可以探索混合方法:基础分类和常见条件判断依赖微调,特殊情况查询和详细解释利用RAG。这部分需要后续做更多的研究和实验对比。
RAG需要构建和维护一个高质量的知识库,并且检索的准确性直接影响最终结果。相比之下,微调是将知识“内化”到模型参数中,对于需要复杂推理和理解细微差别的任务(比如判断物品状态对分类的影响),微调后的模型可能表现更直接、更鲁棒。


相关链接:

  1. CherryStudio仓库:GitHub - CherryHQ/cherry-studio: 🍒 Cherry Studio is a desktop client that supports for multiple LLM providers.
  2. Creating Your First QA Pipeline with Retrieval-Augmentation | Haystack这篇文章是一篇 Haystack 教程,详细讲述如何构建的第一个RAG库。逐步讲解核心概念和基本组件,包括如何准备和加载文档数据、设置一个检索器 (Retriever) 来从文档库中查找相关信息,以及配置一个生成器 (Generator) 来利用检索到的信息生成最终答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值