直接拿大模型当搜索页(SERP)会怎样?

9ffd64c657c71fdbe9a4ce4812ca5071.png

Deep(Re)Search 和那些依赖外部搜索 RAG 系统中,一个头疼的事是:如何判断当前的问题能否该由 LLM 直接作答,还是必须搜索外部信息才能解决?常见的实现都是通过提示词进行路由。而这篇文章给出了一个奇妙的方法——把大模型直接当做 SERP(Search Engine Results Page,搜索引擎结果页)——或超级靠谱或离了大谱。但看到最后,你可能会有所悟。

反其道而行 模型即搜索

自检索增强生成 (RAG) 技术兴起后,利用大型语言模型 (LLM) 改进搜索已成为行业共识。从 Perplexity 到 DeepSearch 和 DeepResearch,将搜索引擎结果融入 LLM 的内容生成过程已是业内普遍做法。

很多用户表示,现在已经不怎么用 Google 了,觉得传统的翻页搜索既麻烦又过时。相比之下,他们更喜欢聊天式的搜索界面,能够直接给出高精度、高召回率的结果,这似乎也代表了搜索的未来发展方向。

那么,直接拿大模型当搜索页(SERP)会怎样?

你可以像使用 Google 一样探索 LLM 内部蕴藏的知识,同样可以分页、点击链接,所有你熟悉的传统搜索元素都不少。但这一切完全由 AI 生成。 如果这个概念还不够直观,请先查看下方的演示。

标题、链接、摘要都由 LLM 生成。可以直接访问 jina.ai/llm-serp-demo 实际体验。

这个想法靠谱吗?

在大牛们纷纷举起手来要发表幻觉问题之前,我们先来给刚入门的小白们解释一下为什么这个思路不是 那么的 离谱。

首先是海量的知识储备,LLM 是在海量的网络知识库上训练的,已经“记住”了大量的互联网信息。例如,DeepSeek-R1、GPT-4、Claude-3.7 和 Gemini-2.0 等模型,都接受过来自公共互联网的数万亿 token 的训练。

其次是可观的数据覆盖率,粗略估计,领先的 LLM 已经学习了 1% 到约 5% 的高质量、公开可访问的网络文本。这个比例乍看似乎不高,但如果以 Google 的索引作为基准(视作世界上 100% 的用户可访问数据),那么 LLM 已经相当于一个小型搜索引擎所能提供的数据量了。

搜索引擎数据覆盖率 (以 Google 为 100%)
Google100%
Bing30-50%
百度5-10%
Yandex3-5%
Brave Search<1%
LLM (预估值)1-5% (高质量数据)

最后是记忆激活机制:我们可以通过巧妙的 Prompt Engineering (提示词工程),激活 LLM 的记忆,让他们能够像搜索引擎一样运行,并生成类似搜索引擎结果页 (SERP) 的结果。

诚然,LLM 作为 SERP 也面临着一些挑战,其中最突出的仍然是幻觉问题,即模型可能会生成不实或不准确的信息。但我们有理由相信,随着模型架构的不断演进和训练数据的日益丰富,幻觉问题终将得到缓解。正如在 X/Twitter 上,大家热衷于使用最新发布的 LLM 生成 SVG 图像,并亲眼见证生成质量不断提高一样,我们也对 LLM 理解数字世界的能力抱有同样的期待。

2cebc8e92c4f00453af62bf1db7975d7.png
Aidan McLaughlin 展示了随着时间推移,GPT 在一步到位生成 SVG 自画像方面的能力是如何不断提升的。

知识截止日期是 LLM as SERP 的另一个重要局限。 理想的搜索引擎应该能够提供近乎实时的信息,但由于 LLM 权重在训练后被冻结,无法提供超出其截止日期的准确信息。

一般来说,查询越接近这个截止日期,就越容易出现幻觉。较早的信息可能已经被反复引用和修正,因此在训练数据中占据了更大的比重。(这里我们假设信息权重分配是均匀分布的,但实际情况中,突发的大新闻和头条们,即便离知识截止时间较近,也可能因其反复的曝光而在训练预料中获得高权重。)

但反过来说,这个局限恰恰启发了我们对他的应用场景:它可以被巧妙的用在回答模型知识范围内的问题。相当于我们打了个赌,赌用户的问题(或 DeepSearch 中的过渡问题)落不落在模型的知识截止日期之前,如果落在截止之内,且模型性能比较好(参考上面提到的 SVG 生成图片的例子),那么这个回答就是更有可能是正确的。如果落在截止时间之后,那么这个回答错误的可能性就要高一些。

LLM as SERP 究竟有何用?

DeepSearch/RAG 或任何依赖外部信息的系统中,一个绕不开的问题是:如何判断当前的问题能否通过 LLM 自身的知识来解答,还是必须借助外部信息才能解决? 目前常见的做法是采用基于提示词的路由策略,并配合类似这样的提示词:

- 对于问候、闲聊或常识性问题,直接回答,无需检索外部信息。
- 对于其他问题,提供基于外部知识验证过的答案,并给出精确引用 (exactQuote) 和对应网址 (url) 作为参考文献。

然而,这种方法也难免有所疏漏:有时会不必要地触发搜索,有时又会遗漏关键的信息需求。特别是一些较新的推理模型,往往要等到生成过程过半,才能判断是否需要外部数据。

那么,如果一开始就不分青红皂白的搜索呢?

我们可以同时调用真实的搜索引擎 API 和 LLM as SERP。这样就避免了前期进行路由决策的麻烦,可以把决策推迟到下游。在后续环节里,我们可以直接比较两者的结果:一边是来自真实搜索的最新数据,一边是 LLM 训练截止日期内的知识以及可能存在的偏差信息。

LLM-SERP 提供的搜索结果,会混合真实知识和虚构信息(也就是“幻觉”)。由于真实的搜索引擎提供的是基于事实的内容,加上 LLM 提供的半真实半虚构内容,总体来说,真实内容的占比会更高一些,所以后续的推理步骤就可以自然地偏重真实知识。

下一步 LLM 可以通过简单的总结来找出结果之间的矛盾和共识,并根据信息源的新鲜度、可靠性,来归纳真实信息。归纳总结这件事情,这种事情本来就是 LLM 的优势所在,所以我们无需将这些复杂的逻辑硬编码到提示词里。

当然,我们还能借助 Jina Reader 访问每个搜索结果的网址,通过访问网页来核实信息。这一步验证无论如何都省不掉,千万别只看搜索引擎提供的摘要,不管这个搜索引擎是真是假。

结论

通过使用 LLM as SERP,我们将“这是否在模型的知识范围内?”的二元问题转化为更可靠的证据加权过程。这样就避免了在 DeepSearch 系统中通过前置系统提示词来路由的需求。当然这个应用场景的假设逻辑链为:

  1. 大模型的训练预料相当于一个小型高质量搜索引擎。

  2. 大模型随着不断地发展,幻觉问题会减轻。而知识截止和幻觉问题相对独立,即一个完美的大模型,回答那些落在知识截止时间之前的问题应该零幻觉。在回答那些落在知识截止时间之后的问题,才会出现幻觉。

  3. 网上的信息也是亦真亦假,大模型的信息也是亦真亦假。

  4. 在做搜索接地时(Search Grounding) 我们无需过度担心真假带来的问题,而只需要考虑召回率即可。总结的事情,即提升 Precision(精准率)的事情留给大模型去做。

我们提供了一个在线 demo 以及 API,欢迎大家亲自体验和测试。你也可以将其集成到自己的 DeepSearch/DeepResearch 项目中,看看是否能带来性能上的提升。

  • 在线体验 demo:https://jina.ai/llm-serp-demo

  • API:https://jina.ai/api-dashiboard/llm-serp

f91ed7a07d69bb5f6f8c461c5f0dfa8d.png

API 模拟了完整的搜索引擎结果页面 (SERP) 端点,你可以自定义返回结果的数量、分页方式、搜索国家/地区、语言等参数。

此外,本项目代码已开源,可在 https://github.com/jina-ai/node-serp 上获取。

我们期待听到你对这个想法的反馈!

8c9a58913fff3194ab967578d1aac9fa.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值