Mask R-CNN获得了ICCV 2017 best paper award (Marr prize),下载地址:https://arxiv.org/abs/1703.06870
这篇文章的核心idea:给Faster R-CNN加入分割支路,使其可进行实例分割(instance segmentation)。idea虽然简单,但要想让其work,路上还有很多坑,解决这些坑的方案就构成了论文的创新点:
1、Binary loss: 用来防止语义分割的类别竞争。
2、Class-Agnostic masks: 实例的类别信息从RoI proposal的分类结果得到。
3、用RoIAlign替代RoIPool,使得分割结果与RoI proposal的空间位置对齐。RoIAlign是内插后划分成7x7,RoIWarp是外插后划分成7x7。
4、Mask Branch使用分辨率为28x28的FCN,卷积层的通道数为: 
 256 -> 256 -> 256 -> 256 -> 256 -> 80
5、使用基础网络ResNeXt-101-FPN最有效。
                  
                  
                  
                  
                            
Mask R-CNN在Faster R-CNN基础上增加分割支路,实现目标实例分割。论文提出Binary Loss防止类别竞争,Class-Agnostic Masks获取实例类别信息,RoIAlign提升分割精度等创新。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					837
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            