论文阅读:Mask R-CNN

Mask R-CNN在Faster R-CNN基础上增加分割支路,实现目标实例分割。论文提出Binary Loss防止类别竞争,Class-Agnostic Masks获取实例类别信息,RoIAlign提升分割精度等创新。

Mask R-CNN获得了ICCV 2017 best paper award (Marr prize),下载地址:https://arxiv.org/abs/1703.06870

这篇文章的核心idea:给Faster R-CNN加入分割支路,使其可进行实例分割(instance segmentation)。idea虽然简单,但要想让其work,路上还有很多坑,解决这些坑的方案就构成了论文的创新点:

1、Binary loss: 用来防止语义分割的类别竞争。

2、Class-Agnostic masks: 实例的类别信息从RoI proposal的分类结果得到。

3、用RoIAlign替代RoIPool,使得分割结果与RoI proposal的空间位置对齐。RoIAlign是内插后划分成7x7,RoIWarp是外插后划分成7x7。

4、Mask Branch使用分辨率为28x28的FCN,卷积层的通道数为:
256 -> 256 -> 256 -> 256 -> 256 -> 80

5、使用基础网络ResNeXt-101-FPN最有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值