人脸识别的研究集中在三个方面:数据集、度量学习、基础网络结构,本文主要介绍其中的度量学习。
由于人脸识别存在测试集(open dataset)的类别不在训练集中的问题,使得较新的人脸识别方法的核心在于度量学习(loss的定义),使得未知类的特征之间可以较好地分开。
这个度量学习其实就是修改softmax的定义。到目前为止主要有以下几种loss:
0、contrastive loss (DeepID2)
1、center loss
在softmax的基础上加入关于feature vector的L2度量,使得类内高度聚合。
2、triplet loss (FaceNet)
上式中d(a,p)是anchor样本和正(positive)样本之间的欧式距离,d(a,n)是anchor样本和负(negative)样本之间的距离。当d(a,n)-d(a,p)>margin时,loss为0;否则loss大于0。