人脸识别之度量学习

人脸识别研究关键在于度量学习,特别是针对测试集中未知类别的问题。本文探讨了softmax的改进,如center loss、triplet loss、A-softmax、cosFace、AM-softmax和arcFace等,这些loss函数旨在优化特征空间,增强类间区分度。
摘要由CSDN通过智能技术生成

人脸识别的研究集中在三个方面:数据集、度量学习、基础网络结构,本文主要介绍其中的度量学习。

由于人脸识别存在测试集(open dataset)的类别不在训练集中的问题,使得较新的人脸识别方法的核心在于度量学习(loss的定义),使得未知类的特征之间可以较好地分开。

这个度量学习其实就是修改softmax的定义。到目前为止主要有以下几种loss:

0、contrastive loss (DeepID2)
这里写图片描述
1、center loss
在softmax的基础上加入关于feature vector的L2度量,使得类内高度聚合。
这里写图片描述

这里写图片描述

2、triplet loss (FaceNet)
这里写图片描述
上式中d(a,p)是anchor样本和正(positive)样本之间的欧式距离,d(a,n)是anchor样本和负(negative)样本之间的距离。当d(a,n)-d(a,p)>margin时,loss为0;否则loss大于0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值