7131.Nun Heh Heh Aaaaaaaaaaa
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const ll mod = 998244353;
int dp[100005][10];
ll mod_pow(ll n) //使用快速幂运算求2^n % mod
{
ll ans = 1, a = (ll)2;
while (n){
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
n >>= 1;
}
return ans % mod;
}
ll ksm(ll base, ll power)//快速幂求base^power % mod
{
ll ans = 1;
while(power)
{
if(power&1)
ans = ans*base%mod;
power = power>>1;
base = base*base%mod;
}
return ans;
}
int main(){
int T;
cin >> T;
while (T--){
string s, t = "nunhehheh";
memset(dp, 0, sizeof(dp));
cin >> s;
int n = s.length(), m = t.length();
s = " " + s, t = " " + t;
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
int num_a = 0;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
if (j > i) {
continue;
}
if (s[i] == t[j]) {
dp[i][j] = (dp[i - 1][j - 1] + dp[i - 1][j]) % mod;
}else {
dp[i][j] = dp[i - 1][j] % mod;
}
}
if(s[i] == 'a')
num_a++;
}
ll res = 0;
for (int i = 1; i < n; i++){
if (s[i] == 'a')
num_a--;
res = (res+((dp[i][m] - dp[i-1][m] + mod) % mod
* (ksm(2,num_a)-1))) % mod;
}
cout << res << endl;
}
return 0;
}
run:
7129.Primality Test
中文参考
题意 :f(x)是严格大于x的最小质数,g(x)=[f(x)+f(f(x))]/2的向下取整,判断g(x)是否是质数
思路 :f(f(x))即f(x)相邻的下一个质数,g(x)在相邻两个质数之间,所以g(x)一定是合数,除了x=1的情况下,f(1)=2,f(2)=3,即除了2和3之间以外
语法 :long long 9e18多,int 2e9多
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int T;
cin >> T;
while (T --)
{
long long x;
scanf("%lld", &x);
if (x == 1){
puts("YES");
} else {
puts("NO");
}
}
return 0;
}
When x=1, f(x)=2, f(f(x))=f(2)=3, then g(x)=⌊2+32⌋=2, which is a prime. So the output is 𝚈𝙴𝚂.
When x=2, f(x)=3, f(f(x))=f(3)=5, then g(x)=⌊3+52⌋=4, which is not a prime. So the output is 𝙽𝙾.
7127.Kanade Doesn’t Want to Learn CG
#include <iostream>
#define endl '\n'
using namespace std;
typedef long long ll;
ll a, b, c, x0, x1, y0, y1, y2;
ll f(ll x)
{
return a * x * x + b * x + c;
}
int main()
{
int T;
cin >> T;
while (T -- )
{
cin >> a >> b >> c >> x0 >> x1 >> y0 >> y1 >> y2;
if (f(x0) <= y0) cout << "No" << endl;
else if (f(x1) > y2) cout << "No" << endl;
else if (f(x1) == y0) cout << "No" << endl;
else if (f(x1) >= y0 && f(2 * x1 - x0) >= y0) cout << "No" << endl;
else cout << "Yes" << endl;
}
return 0;
}
7136.Jumping Monkey
#include<bits/stdc++.h>
using namespace std;
int T,n;//节点数n
int head[100005],net[300005],v[300005],d[100005],w[100006],vis[100005];//原图,其中w为权值,d为深度
int tot=0,tot2;//原图边的数目tot1,新的连通图变得个数tot2
int fa[100005];
int head2[100005],net2[300005],v2[300005];//新的连通图
void add(int x,int y)//构造原图
{
v[++tot]=y,net[tot]=head[x],head[x]=tot;
}
void add2(int x,int y)//构造新的连通图
{
v2[++tot2]=y,net2[tot2]=head2[x],head2[x]=tot2;
}
void init()//初始化
{
tot=0;
tot2=0;
for(int i=1;i<=n;i++)
{
d[i]=0,head[i]=0,vis[i]=0,head2[i]=0,fa[i]=i,vis[i]=0;
}
}
int find(int x)//并查集查询节点x对应连通块中权值最大的点
{
if(x==fa[x])
return x;
else
{
return fa[x]=find(fa[x]);
}
}
struct node
{
int p,w;//p为节点编号,w为节点权值
const bool operator<(node y)const//按照权值从小到大排序
{
return this->w<y.w;
}
}que[100005];
void bfs(int x)
{
vis[x]=1;
for(int i=head[x];i;i=net[i])//在原图中找到x点一步能到达的点
{
int y=v[i];
if(!vis[y])//这个点不在新构造的连通图中
continue;
int ty=find(y);//查询这个节点对应连通块中权值最大的点
if(ty==x)//如果这个连通块中权值最大的点不是x就令fa[ty]=x,并且在x和ty之间添加有向边e(x->ty)
continue;
add2(x,ty);
fa[ty]=x;
}
}
void bfs2(int x)//以x节点为根节点在新构造的连通图中求每个节点的深度
{
queue<int>q;
q.push(x);
d[x]=1;//根节点深度为1
while(q.size())
{
x=q.front();
q.pop();
for(int i=head2[x];i;i=net2[i])
{
int y=v2[i];
if(d[y])
continue;
d[y]=d[x]+1;
q.push(y);
}
}
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init();
for(int i=1;i<n;i++)//输入原图
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)//输入每个点的权值
{
scanf("%d",&w[i]);
que[i].p=i;
que[i].w=w[i];
}
sort(que+1,que+1+n);//对每个点按照权值大小从小到大排序
for(int i=1;i<=n;i++)//排序后从小到大将每个节点加入新构造的连通图
{
bfs(que[i].p);
}
bfs2(que[n].p);//以权值最大的节点为根节点求每个节点的深度
for(int i=1;i<=n;i++)//输出每个节点的深度,也就是解
printf("%d\n",d[i]);
}
return 0;
}