1 前言
最近正在学习图神经网络,先pick up了一些最基础的图论知识并学习了一些好玩的应用。
本文启发于B站视频(BV1LY411R7HJ),其对于上海地铁站点图使用了无向图也就是nx.Graph()进行建模的(Python的NetworkX库)。但是由于上海地铁存在两个站点之间可有多条线路相通的情况(如3号线和4号线共享了“虹桥路 ”、“延安西路”、“中山公园”、“金沙江路”、“曹杨路”等多个站点),所以单纯的无向图严格来说不能充分解决该问题。
所以准确来讲,应该建立一个多路图(multigraph),即节点与节点之间应可以创建多条边。下图是多路图(左)与普通图(右)之间的区别。
在NetworkX库中,nx.Graph()的add_edges_from()方法是无法添加多条边的,文档里是这样记载的:
Notes-----Adding the same edge twice has no effect but any edge datawill be updated when each duplicate edge is added.
下面解决这个问题:
2 导包+导入数据集
import networkx as nx
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
# 上海地铁站点连接表
df = pd.read_csv('shanghai_subway.csv')
df.head()
3 创建多路图,导入节点和边信息
# 创建多路图
G = nx.MultiGraph()
for idx, row in df.iterrows(): # 遍历表格的每一行,添加节点
G.add_edges_from([(row['前一站'], row['后一站'])], line=row['