表达式一般由操作数、运算符组成,例如算术表达式中,通常把运算符放在两个操作数的中间,这称为中缀表达式,如A+B。波兰数学家Jan Lukasiewicz提出了另一种数学表示法,它有两种表示形式:把运算符写在操作数之前,称为波兰表达式或前缀表达式,如+AB;把运算符写在操作数之后,称为逆波兰表达式或后缀表达式,如AB+;
将中缀表达式转换成后缀表达式算法:
1、从左至右扫描中缀表达式。
2、若读取的是操作数,则判断该操作数的类型,并将该操作数存入操作数堆栈
3、若读取的是运算符
(1) 该运算符为左括号"(",则直接存入运算符堆栈。
(2) 该运算符为右括号")",则输出运算符堆栈中的运算符到操作数堆栈,直到遇到左括号为止。
(3) 该运算符为非括号运算符:
(a) 若运算符堆栈栈顶的运算符为括号,则直接存入运算符堆栈。
(b) 若比运算符堆栈栈顶的运算符优先级高或相等,则直接存入运算符堆栈。
(c) 若比运算符堆栈栈顶的运算符优先级低,则输出栈顶运算符到操作数堆栈,并将当前运算符压入运算符堆栈。
4、当表达式读取完成后运算符堆栈中尚有运算符时,则依序取出运算符到操作数堆栈,直到运算符堆栈为空。
逆波兰表达式求值算法:
1、循环扫描语法单元的项目。
2、如果扫描的项目是操作数,则将其压入操作数堆栈,并扫描下一个项目。
3、如果扫描的项目是一个二元运算符,则对栈的顶上两个操作数执行该运算。
4、如果扫描的项目是一个一元运算符,则对栈的最顶上操作数执行该运算。
5、将运算结果重新压入堆栈。
6、重复步骤2-5,堆栈中即为结果值。
题目:写出a*(b-c*d)+e-f/g*(h+i*j-k)的逆波兰表达式
根据运算符优先级添加括号。
a*(b-c*d)+e-f/g*(h+i*j-k)
= a * (b - (c * d)) + e - (f / g) * (h + (i * j) - k)
= a * (b - (cd*)) + e - (fg/) * (h + (ij*) - k)
= a * (bcd*-) + e - (fg/) * ((hij*+) - k)
= (abcd*-*) + e - (fg/) * (hij*+k-)
= (abcd*-*e+) - (fg/hij*+k-*)
= (abcd*-*e+fg/hij*+k-*-)
好吧,来个彩蛋:
逆波兰表示法表示表达式时无须使用括号。
有些题真的可以秒杀,比如:写出a*(b-c*d)+e-f/g*(h+i*j-k)的逆波兰表达式。
好吧,无图无真相。直接上图了。