computer vision
文章平均质量分 68
Jinlong_Xu
talk is cheap, show me code!
展开
-
cs231n学习笔记-CNN-目标检测、定位、分割
1. 基本概念 1)CNN:Convolutional Neural Networks 2)FC:Fully Connected 3)IoU:Intersection over Union (IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到) 4)ICCV:转载 2017-04-23 17:28:30 · 647 阅读 · 0 评论 -
ubuntu16.10 安装moviepy报错解决方法
最近要跑一个对视频中的目标进行目标检测的代码,其中代码运行到moviepy的时候,提示报错没有这个包。OK,那简单,直接安装呗。我直接在 Terminal中输入命令行:pip install moviepy紧接着报错了,报错如下:查找原因是连接中断,读取超时。我的解决方法是:pip install -i https://pypi.anac原创 2017-11-28 17:34:24 · 2566 阅读 · 0 评论 -
Deep Compression阅读理解及Caffe源码修改
PS:这是我见过关于Song Han的Deep Compression最详细的的文章,并且给出了原理介绍,实现代码。关于详细代码,请参见文中的github链接。特此推荐!特此推荐!特此推荐!---------------------------------------分割线---------------------------------------------转载 2017-12-12 20:13:09 · 762 阅读 · 0 评论 -
【干货】Inception经典架构对比
Inception 结构是卷积神经网络的经典架构之一,通过采用不同尺度的卷积核(1x1, 3x3, 5x5等),增强特征的多样性,从而提升网络性能。Inception包含Googlenet、Inception v2、Inception v3、Xception 等多个版本。本文一文带你了解个中究竟,横向对比Inception经典网络架构,文末附独家视频讲解,20分钟带你重温经典,你值得拥有~转载 2017-12-23 21:25:50 · 1427 阅读 · 0 评论 -
CNN 模型压缩与加速算法综述
导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。前言自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,转载 2018-01-18 15:00:45 · 575 阅读 · 0 评论 -
深度学习模型压缩方法综述(一)
前言目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。最近正好在关注有关深度学习模型压缩的方法,发现目前已有越来越多关于模型压缩方法的研究,从理论研究到平台实现,转载 2018-01-18 15:02:26 · 666 阅读 · 0 评论 -
深度学习模型压缩方法综述(二)
前言上一章,将基于核的稀疏化方法的模型压缩方法进行了介绍,提出了几篇值得大家去学习的论文,本章,将继续对深度学习模型压缩方法进行介绍,主要介绍的方向为基于模型裁剪的方法,由于本人主要研究的为这个方向,故本次推荐的论文数量较多,但都是非常值得一读的。基于模型裁剪的方法对以训练好的模型进行裁剪的方法,是目前模型压缩中使用最多的方法,通常是寻找一种有效的评判手段,来判断参数的重要性,将不重要的conne转载 2018-01-18 15:04:06 · 831 阅读 · 1 评论 -
深度学习模型压缩方法综述(三)
前言在前两章,我们介绍了一些在已有的深度学习模型的基础上,直接对其进行压缩的方法,包括核的稀疏化,和模型的裁剪两个方面的内容,其中核的稀疏化可能需要一些稀疏计算库的支持,其加速的效果可能受到带宽、稀疏度等很多因素的制约;而模型的裁剪方法则比较简单明了,直接在原有的模型上剔除掉不重要的filter,虽然这种压缩方式比较粗糙,但是神经网络的自适应能力很强,加上大的模型往往冗余比较多,将一些参数剔除之后转载 2018-01-18 15:05:47 · 1363 阅读 · 0 评论 -
详解Fast R-CNN
论文出处见:http://arxiv.org/abs/1504.08083项目见:https://github.com/rbgirshick/fast-rcnnR-CNN的进化版,0.3s一张图片,VOC07有70的mAP,可谓又快又强。而且rbg的代码一般写得很好看,应该会是个很值得学习的项目。动机为何有了R-CNN和SPP-Net之后还要提出Fast RCNN(转载 2018-01-28 23:10:11 · 1095 阅读 · 0 评论 -
yolo回归型的物体检测
发现一篇讲的非常棒的文章,就直接搬到了我的博客上: YOLO全称You Only Look Once: Unified, Real-Time Object Detection,是在CVPR2016提出的一种目标检测算法,核心思想是将目标检测转化为回归问题求解,并基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。YOLO与Faster RCNN转载 2017-09-07 23:05:15 · 10326 阅读 · 6 评论 -
【YOLO】YOLO: You Only Look Once GPU版本的配置与实现
之前在用TensorFlow实现的YOLO,发现效果很一般(GTX960下,一张图1.2s左右),因此打算用darknet实现的YOLO来跑跑看效果。大致交代一下,TensorFlow版本的YOLO在台式机显卡GTX960,16GB内存情况下,大概是1.2s一张图。现在在GPU工作站(CPU至强系列,GPU两块Titan xp)上测试用darknet实现的YOLO,基于CPU的是12.原创 2017-07-16 10:22:47 · 6845 阅读 · 6 评论 -
【YOLO】用 Python 来计算 IOU
在做YOLO目标检测相关的项目,里面涉及到计算IOU,可以理解为系统预测出来的框与原来图片中标记的框的重合程度。 因为YOLO的实现是用tensorflow实现的,而我又要单独列出来,所以就打算用Python来计算 IOU。IOU的计算这个问题,其实我们可以转化成两个矩形框的重合程度,那么第一步是判断是否重合第二步是计算重合程度这里有个难点,如何判断是否重合。我的理解是分别比较原创 2017-06-04 10:11:55 · 10733 阅读 · 1 评论 -
【YOLO学习】召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))
摘要在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall,IoU等等。为了怕以后忘了,现在把自己对这几种度量方式的理解记录一下。 这一文章首先假设一个测试集,然后围绕这一测试集来介绍这几种度量方式的计算方法。大雁与飞机假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示: 假设你的分类系统最终的目的转载 2017-06-03 20:20:44 · 898 阅读 · 0 评论 -
YOLOv2 论文笔记
论文地址:YOLO9000: Better, Faster, Stronger项目主页:YOLO: Real-Time Object DetectionCaffe实现:caffe-yolo9000概述时隔一年,YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darkn转载 2017-04-23 17:27:17 · 2359 阅读 · 0 评论 -
论文阅读:You Only Look Once: Unified, Real-Time Object Detection
Preface今天详细的看一下 CVPR 2016 年这篇:You Only Look Once: Unified, Real-Time Object Detection。另外,这篇的作者也有Ross B. Girshick。这篇 Paper 的项目主页在这里:http://pjreddie.com/darknet/yolo/注:这篇今年 CVPR 2016 年的检测文章 YOLO转载 2017-04-23 17:22:55 · 494 阅读 · 0 评论 -
【YOLO】详解:YOLO-darknet训练自己的数据
准备训练数据使用darknet训练自己的YOLO模型需要将数据转成darknet需要的格式,每张图片对应一个.txt的label文件,文件格式如下: object-class是类的索引,后面的4个值都是相对于整张图片的比例。x是ROI中心的x坐标,y是ROI中心的y坐标,width是ROI的宽,height是ROI的高。我需要用到Pascal VOC、MS转载 2017-07-20 20:10:22 · 18478 阅读 · 1 评论 -
《OpenCV3编程入门》学习笔记六:图像处理
一:内容介绍本节主要介绍OpenCV的imgproc模块的图像处理部分: 1. 线性滤波:均值滤波与高斯滤波 2. 非线性滤波:中值滤波、双边滤波 3. 图像形态学:腐蚀与膨胀,开运算、闭运算,形态学梯度,顶帽、黑帽 4. 漫水填充 5. 图像金字塔及图片尺寸缩放 6. 阈值化二:学习笔记方框滤波(box filter)是不一定归一化的,而这里说的几转载 2017-08-22 10:41:34 · 390 阅读 · 0 评论 -
计算机视觉初级部分知识体系
总结了一下自己在计算机视觉初级部分的知识框架,整理如下。 个人所学并不全面(比如图像频域方面了解就比较少),仅做参考。图像点(pixel值)运算直方图;线性/非线性变换;灰度均衡化/规定化;H-S直方图图像几何变换平移、旋转、镜像、缩放(图像金字塔,图像多尺度表达的一种方法,高斯金字塔、拉普拉斯金字塔);仿射变换空间域滤波线性滤波 均值滤转载 2017-08-22 10:47:03 · 420 阅读 · 0 评论 -
深度学习各领域小结
优秀博客ML Structuring Your TensorFlow Models DEEP LEARNING GLOSSARY待学习专栏 | Momenta详解ImageNet 2017夺冠架构SENet多任务An Overview of Multi-Task Learning in Deep Neural Networks∗ 一箭N雕:多任务转载 2017-08-22 10:49:00 · 1035 阅读 · 0 评论 -
DetNet: A Backbone network for Object Detection 笔记
Face++的lizeming大神注意到了现有Detection Network的两大通病:借用原本为了class而设计的network,牵强地附加上其他辅助结构来实现Detection;下采样能带来大感受野,从而提升class任务精度。但下采样又会损失空间信息,影响detection精度。二者难以协调为此,lizeming大神专门设计了detection专属的DetNet。结构如下: 检测效果惊...转载 2018-04-19 15:51:46 · 1835 阅读 · 0 评论