sense-and-send protocol

该文描述了一种无人机(UAVs)在蜂窝网络中执行感知和发送任务的同步迭代过程。任务周期包括信标阶段、感知阶段和传输阶段。在感知阶段,UAV在指定位置收集信息,并向基站(BS)报告任务状态和下一任务位置。传输阶段中,UAV接收频段分配信息,沿着优化路径飞行并按需传输数据。若任务完成但未到达下一任务点,则进入空闲阶段,仅飞行不进行收发操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

the UAVs perform the sensing tasks in a synchronized iterative manner. Specifically, the process is divided into cycles. The cycle consists of three separated phases, i.e., the beaconing phase, sensing phase, and the transmission phase

执行每一个任务分为三个阶段

sensing phase

UAV 悬停在 task 点上方的一个位置 (sensing location) 进行信息采集 (这个位置不一定是 task 所在的位置) ,过程如下:

phase 1
UAV 使用 control channel向 BS 汇报一些基本信息
The UAV first sends UAV beacon to the BS over control channel, which
contains the information of its location, the ongoing sensing task, the location of the next sensing task, and transmission request.

phase 2
BS 使用 control channel告诉 UAV 频段分配信息,和下一个 task 的 sensing location
The BS then informs the UAV of the subchannel allocation result and sensing location of its next task.

phase 3
进行信息采集,如果分到了频段,则同时开始transmission
Afterwards, the UAV performs data collection until the end of the time slot.

如果本阶段结束时,信息已经全都传给了BS,进入empty phase,否则进入transmission phase

transmission phase

前往下一个无人机的sensing location,同时向BS发送采集到的信息。
这个阶段每一个time slot的过程如下:

phase 1
无人机向 BS 汇报基本信息
In the transmission time slot, the UAV first sends UAV beacon to the BS over control channel, which contains the information of transmission request, UAV location, data length to transmit, and the location of the next sensing location.

phase 2
BS 告诉 UAV 这个time slot的路径和频段分配
The BS then informs the UAV of its trajectory and UAV scheduling solutions in this time slot.

phase 3
UAV按照指示的路径飞行,同时,如果分到了 subchannel,那么就进行 transmission,没分到就只能等着
Afterwards, each UAV moves along the optimized trajectory. the UAV performs data transmission if it is allocated to a subchannel. Otherwise, the UAV cannot transmit data in the current time slot.
如果信息已经传完,但是还没到下一个任务的sensing location,就进入 empty phase

empty phase

只在空中飞行而不收发信息,直到到达下一个 task 的 sensing location。

这个阶段每一个time slot的过程如下:

phase 1
UAV 给 BS 发送基本信息
In empty time slot, the UAV sends UAV beacon that contains its current location and its next sensing location to the BS over control channel.
phase 2
BS 告诉 UAV 下一步往哪走,在 empty time slot UAV 不收发信息
The BS responses the corresponding trajectory to the UAV. The UAV then moves along the optimized trajectory with neither sensing nor transmission in such a time slot.
The UAV will switch to sensing time slot when it arrives at the sensing location of the next task.

在这里插入图片描述
在这里插入图片描述

摘自 Reinforcement Learning for Decentralized Trajectory Design in Cellular UAV Networks With Sense-and-Send Protocol
Cellular Cooperative Unmanned Aerial Vehicle Networks With Sense-and-Send Protocol

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值