△
A
B
C
\triangle ABC
△ABC 的内切圆
⊙
I
\odot I
⊙I 分别与边
B
C
BC
BC,
C
A
CA
CA,
A
B
AB
AB 相切于点
D
D
D,
E
E
E,
F
F
F,
D
D
′
DD'
DD′ 为
⊙
I
\odot I
⊙I 的直径, 过圆心
I
I
I 作直线
A
D
′
AD'
AD′ 的垂线
l
l
l, 直线
l
l
l 分别与
D
E
DE
DE,
D
F
DF
DF 相交于点
M
M
M,
N
N
N. 求证:
I
M
=
I
N
IM=IN
IM=IN . (《高中数学联赛模拟试题精选》“学数学”系列第3套几何题)
证明: 先证明:
△
I
M
E
∼
△
A
D
′
E
\triangle IME \sim \triangle AD'E
△IME∼△AD′E:
∠ A E D ′ = ∠ I D E = ∠ I E M \angle AED'=\angle IDE=\angle IEM ∠AED′=∠IDE=∠IEM.
A D ′ ⊥ I M AD' \bot IM AD′⊥IM, I E ⊥ A E IE \bot AE IE⊥AE, 所以 ∠ D ′ A E = ∠ M I E \angle D'AE=\angle MIE ∠D′AE=∠MIE.
所以 △ I M E ∼ △ A D ′ E \triangle IME \sim \triangle AD'E △IME∼△AD′E.
同理, △ I N F ∼ △ A D ′ F \triangle INF \sim \triangle AD'F △INF∼△AD′F.
I M / I E = A ′ D / A E = A ′ D / A F = I N / I F IM/IE=A'D/AE=A'D/AF=IN/IF IM/IE=A′D/AE=A′D/AF=IN/IF.
所以 I M = I F IM=IF IM=IF.
证毕.