三角形的垂足三角形与内接三角形

对于 △ A B C \triangle ABC ABC, P P P为平面上任意一点, 其垂足三角形为 △ P 1 P 2 P 3 \triangle P_1P_2P_3 P1P2P3, 是否存在垂足三角形某种特定形状(即 ∠ P 2 P 1 P 3 = α \angle P_2P_1P_3=\alpha P2P1P3=α, ∠ P 1 P 2 P 3 = β \angle P_1P_2P_3=\beta P1P2P3=β, ∠ P 1 P 2 P 3 = γ \angle P_1P_2P_3=\gamma P1P2P3=γ)的点 P P P? 并求出其集合.

先证明一个结论:
∠ B P C = ∠ P 3 P 1 P 2 + ∠ A \angle BPC=\angle P_3P_1P_2+\angle A BPC=P3P1P2+A
易证 B B B, P 3 P_3 P3, P P P, P 1 P_1 P1 四点共圆; C C C, P 2 P_2 P2, P P P, P 1 P_1 P1 四点共圆
所以 ∠ P 3 P 1 P = ∠ A B P \angle P_3P_1P=\angle ABP P3P1P=ABP
∠ P P 1 P 2 = ∠ P C P 2 \angle PP_1P_2=\angle PCP_2 PP1P2=PCP2
∠ B P P 1 = ∠ A B P + ∠ B A P \angle BPP_1=\angle ABP+\angle BAP BPP1=ABP+BAP
∠ C P P 1 = ∠ A C P + ∠ C A P \angle CPP_1=\angle ACP+\angle CAP CPP1=ACP+CAP
进而得出此结论, 同理
∠ A P B = ∠ P 1 P 3 P 2 + ∠ C \angle APB=\angle P_1P_3P_2+\angle C APB=P1P3P2+C
∠ A P C = ∠ P 3 P 2 P 1 + ∠ B \angle APC=\angle P_3P_2P_1+\angle B APC=P3P2P1+B
因此 P P P 点满足命题条件的充要条件是:
在以 B C BC BC为弦, 半径为 a / ( 2 sin ⁡ ( A + α ) ) a/(2\sin(A+\alpha)) a/(2sin(A+α)) ⨀ O 1 \bigodot O_1 O1 (取使得 ∠ B P C = α \angle BPC=\alpha BPC=α的那个, 下面同理), 以 A C AC AC为弦, 半径为 b / ( 2 sin ⁡ ( B + β ) ) b/(2\sin(B+\beta)) b/(2sin(B+β)) ⨀ O 2 \bigodot O_2 O2, 以 B C BC BC为弦, 半径为 c / ( 2 sin ⁡ ( C + γ ) ) c/(2\sin(C+\gamma)) c/(2sin(C+γ)) ⨀ O 3 \bigodot O_3 O3的交点(异于三角形三顶点)上.

可以证明三圆必交于一点.
⨀ O 1 \bigodot O_1 O1, ⨀ O 2 \bigodot O_2 O2 交于 X X X, 则 ∠ A P B = 2 π − ∠ B P C − ∠ A P C = 2 π − A − B − α − β = C + γ \angle APB=2\pi-\angle BPC-\angle APC=2\pi-A-B-\alpha-\beta=C+\gamma APB=2πBPCAPC=2πABαβ=C+γ, X X X 必在 ⨀ O 3 \bigodot O_3 O3 上.

因此充要条件可以进一步弱化为这三个圆任意两个的交点.

当交点在顶点上时, 没有满足条件的点. 否则存在, 其集合为该交点.

在回答下一个问题前, 我们先证明一条引理, 对于 △ A B C \triangle ABC ABC, 将由 P P P 向三边所引的三条垂线旋转任意角度, 与三边(所在直线)的交点构成的三角形均与 △ P 1 P 2 P 3 \triangle P_1P_2P_3 P1P2P3 相似.

易证三个阴影三角形相似, 进而 △ P 3 P P 2 ∼ ∠ P 3 ′ P P 2 ′ \triangle P_3PP_2 \sim \angle P_{3}{'} PP_{2}{'} P3PP2P3PP2, △ P 3 P P 1 ∼ ∠ P 3 ′ P P 1 ′ \triangle P_3PP_1 \sim \angle P_{3}{'} PP_1{'} P3PP1P3PP1, △ P 2 P P 1 ∼ ∠ P 2 ′ P P 1 ′ \triangle P_2PP_1 \sim \angle P_2{'} PP_1{'} P2PP1P2PP1
进而 ∠ P 3 P 2 P 1 = ∠ P 3 ′ P 2 ′ P 1 ′ \angle P_3P_2P_1=\angle P_3{'}P_2{'}P_1{'} P3P2P1=P3P2P1
∠ P 3 P 1 P 2 = ∠ P 3 ′ P 1 ′ P 2 ′ \angle P_3P_1P_2=\angle P_3{'}P_1{'}P_2{'} P3P1P2=P3P1P2
∠ P 2 P 3 P 1 = ∠ P 2 ′ P 3 ′ P 1 ′ \angle P_2P_3P_1=\angle P_2{'}P_3{'}P_1{'} P2P3P1=P2P3P1
进而
△ P 3 P 1 P 2 ∼ △ P 3 ′ P 1 ′ P 2 ′ \triangle P_3P_1P_2 \sim \triangle P_3{'}P_1{'}P_2{'} P3P1P2P3P1P2

是否存在某种特定形状(即 ∠ S 2 S 1 S 3 = α \angle S_2S_1S_3=\alpha S2S1S3=α, ∠ S 1 S 2 S 3 = β \angle S_1S_2S_3=\beta S1S2S3=β, ∠ S 1 S 3 S 2 = γ \angle S_1S_3S_2=\gamma S1S3S2=γ)的内接三角形(三点分别在三角形三边所在直线上即算作内接三角形)?并求出其集合.

可以证明: 若一个内接三角形为此形状, 则其 Miquel 点的垂足三角形必然为此形状, 即其 Miquel 点必为垂足三角形为此形状的点, 记为 S S S, 且其必然与 S S S 的垂足三角形满足引理中 △ P 1 ′ P 2 ′ P 3 ′ \triangle P_1'P_2'P_3' P1P2P3 △ P 1 P 2 P 3 \triangle P_1P_2P_3 P1P2P3的位置关系.

证明可参考引理, 此处略.

由此我们不难回答此问题, 当存在一点 S S S 的垂足三角形为此形状时, 此类内接三角形必然存在, 其集合是所有与 S S S 的垂足三角形满足引理中 △ P 1 ′ P 2 ′ P 3 ′ \triangle P_1'P_2'P_3' P1P2P3 △ P 1 P 2 P 3 \triangle P_1P_2P_3 P1P2P3的位置关系的内接三角形.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值