Smith标准形存在性

先证明如下几个引理:

引理1. A ( λ ) \mathbf{A}(\lambda) A(λ) n n n λ \lambda λ矩阵, a 11 ( λ ) ≠ 0 a_{11} (\lambda) \neq 0 a11(λ)=0, 且 A ( λ ) \mathbf{A}(\lambda) A(λ) 的第1行或第1列中存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除, 则存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) a'_{11}(\lambda) a11(λ) 整除第 1 1 1 行与第 1 1 1 列的所有元素且 deg ⁡   a 11 ′ ( λ ) < deg ⁡   a 11 ( λ ) \deg \ a'_{11}(\lambda)< \deg \ a_{11}(\lambda) deg a11(λ)<deg a11(λ).

证明: 若第 1 1 1 列中存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除: 设 a i 1 ( λ ) a_{i1}(\lambda) ai1(λ) ( 2 ≤ i ≤ n 2 \leq i \leq n 2in) 不能被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除. 存在多项式 p ( λ ) p(\lambda) p(λ), r ( λ ) r(\lambda) r(λ), 使得: a i 1 ( λ ) = a 11 ( λ ) p ( λ ) + r ( λ ) a_{i1}(\lambda)=a_{11}(\lambda)p(\lambda)+r(\lambda) ai1(λ)=a11(λ)p(λ)+r(λ) deg ⁡   r ( λ ) < deg ⁡   a 11 ( λ ) \deg \ r(\lambda)\lt \deg \ a_{11} (\lambda) deg r(λ)<deg a11(λ). 将第 1 1 1 行乘以 − p ( λ ) -p(\lambda) p(λ) 加到第 i i i 行, 并交换第 i i i 行和第 1 1 1 行, 此时 a 11 ( λ ) = r ( λ ) a_{11}(\lambda)=r(\lambda) a11(λ)=r(λ). 若此时第 1 1 1 列中仍存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除, 则对 A ( λ ) \mathbf{A}(\lambda) A(λ) 重复上述过程. 这个过程至多进行有限次, 因为每次执行完后 a 11 ( λ ) a_{11}(\lambda) a11(λ) 次数都比上次降低至少 1 1 1, 若无限进行下去, a 11 ( λ ) a_{11}(\lambda) a11(λ) 的次数将会是负数, 矛盾.

此时, 若第 1 1 1 行中存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除: 设 a i 1 ( λ ) a_{i1}(\lambda) ai1(λ) ( 2 ≤ i ≤ n 2 \leq i \leq n 2in) 不能被 a 1 i ( λ ) a_{1i}(\lambda) a1i(λ) 整除. 存在多项式 p ( λ ) p(\lambda) p(λ), r ( λ ) r(\lambda) r(λ), 使得: a 1 i ( λ ) = a 11 ( λ ) p ( λ ) + r ( λ ) a_{1i}(\lambda)=a_{11}(\lambda)p(\lambda)+r(\lambda) a1i(λ)=a11(λ)p(λ)+r(λ) deg ⁡   r ( λ ) < deg ⁡   a 11 ( λ ) \deg \ r(\lambda)\lt \deg \ a_{11} (\lambda) deg r(λ)<deg a11(λ). 将第 1 1 1 列乘以 − p ( λ ) -p(\lambda) p(λ) 加到第 i i i 列, 并交换第 i i i 列和第 1 1 1 列, 此时 a 11 ( λ ) = r ( λ ) a_{11}(\lambda)=r(\lambda) a11(λ)=r(λ). 若此时第 1 1 1 行中仍存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除, 则对 A ( λ ) \mathbf{A}(\lambda) A(λ) 重复上述过程. 这个过程至多进行有限次, 因为每次执行完后 a 11 ( λ ) a_{11}(\lambda) a11(λ) 次数都比上次降低至少 1 1 1, 若无限进行下去, a 11 ( λ ) a_{11}(\lambda) a11(λ) 的次数将会是负数, 矛盾. 此时令 A ′ ( λ ) = A ( λ ) \mathbf{A}'(\lambda)=\mathbf{A}(\lambda) A(λ)=A(λ) 即可得此命题.

引理2. A ( λ ) \mathbf{A}(\lambda) A(λ) n n n λ \lambda λ矩阵, a 11 ( λ ) ≠ 0 a_{11} (\lambda) \neq 0 a11(λ)=0, 且 A ( λ ) \mathbf{A}(\lambda) A(λ) 中存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除, 则存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) ≠ 0 a_{11}'(\lambda) \neq 0 a11(λ)=0, d e g   a 11 ′ ( λ ) < d e g   a 11 ( λ ) \mathrm{deg}\ a'_{11}(\lambda)<\mathrm{deg} \ a_{11}(\lambda) deg a11(λ)<deg a11(λ) a 11 ′ ( λ ) a_{11}'(\lambda) a11(λ) 整除 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 的所有元素.

证明: 由引理1可知, 存在与 A ( λ ) \mathbf{A}(\lambda) A(λ) 相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) a'_{11}(\lambda) a11(λ) 整除第1行与第1列的所有元素且 deg ⁡   a 11 ′ ( λ ) < deg ⁡   a 11 ( λ ) \deg \ a'_{11}(\lambda)< \deg \ a_{11}(\lambda) deg a11(λ)<deg a11(λ). 令 A ( λ ) = A ′ ( λ ) \mathbf{A}(\lambda)=\mathbf{A}'(\lambda) A(λ)=A(λ). 此时, 若 a 11 ( λ ) a_{11}(\lambda) a11(λ) 无法整除所有元素 A ( λ ) \mathbf{A}(\lambda) A(λ): 设 a i j ( λ ) a_{ij}(\lambda) aij(λ), i , j ≠ 1 i,j\neq 1 i,j=1 不能被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除. 令 p ( λ ) = a i 1 ( λ ) / a 11 ( λ ) p(\lambda)=a_{i1}(\lambda)/a_{11}(\lambda) p(λ)=ai1(λ)/a11(λ). 将第 1 1 1 行乘以 − p ( λ ) -p(\lambda) p(λ) 加到第 i i i 行, 记得到的矩阵为 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 则 a i 1 ′ ( λ ) = 0 a'_{i1}(\lambda)=0 ai1(λ)=0, a i j ′ ( λ ) = a i j ( λ ) − p ( λ ) a 1 j ( λ ) a'_{ij}(\lambda)=a_{ij}(\lambda)-p(\lambda)a_{1j}(\lambda) aij(λ)=aij(λ)p(λ)a1j(λ), 再将第 i i i 行加到第 1 1 1 行, 记得到的矩阵为 A ′ ′ ( λ ) \mathbf{A}''(\lambda) A′′(λ), 此时 a 11 ′ ′ ( λ ) = a 11 ( λ ) a''_{11}(\lambda)=a_{11}(\lambda) a11′′(λ)=a11(λ), a 1 j ′ ′ ( λ ) = a 1 j ( λ ) [ 1 − p ( λ ) ] + a i j ( λ ) a''_{1j}(\lambda)=a_{1j}(\lambda)[1-p(\lambda)]+a_{ij}(\lambda) a1j′′(λ)=a1j(λ)[1p(λ)]+aij(λ), a 11 ( λ ) ∤ a 1 j ( λ ) a_{11}(\lambda) \nmid a_{1j}(\lambda) a11(λ)a1j(λ). 令 A ( λ ) = A ′ ′ ( λ ) \mathbf{A}(\lambda)=\mathbf{A}''(\lambda) A(λ)=A′′(λ), 根据引理1, 存在与 A ( λ ) \mathbf{A}(\lambda) A(λ) 相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) a'_{11}(\lambda) a11(λ) 整除第1行与第1列的所有元素且 deg ⁡   a 11 ′ ( λ ) < deg ⁡   a 11 ( λ ) \deg \ a'_{11}(\lambda)< \deg \ a_{11}(\lambda) deg a11(λ)<deg a11(λ). 令 A ( λ ) = A ′ ′ ( λ ) \mathbf{A}(\lambda)=\mathbf{A}''(\lambda) A(λ)=A′′(λ). 若此时仍存在无法被 a i j ( λ ) a_{ij}(\lambda) aij(λ) 整除的元素, 则对 A ( λ ) \mathbf{A}(\lambda) A(λ) 重复上述过程. 这个过程至多进行有限次, 若不然, 因为每次执行完后 a 11 ( λ ) a_{11}(\lambda) a11(λ) 次数都比上次降低至少 1 1 1, 因此若无限进行下去, a 11 ( λ ) a_{11}(\lambda) a11(λ) 的次数将为负, 矛盾. 此时令 A ′ ( λ ) = A ( λ ) \mathbf{A}'(\lambda)=\mathbf{A}(\lambda) A(λ)=A(λ) 即可得此命题.

引理3. A ( λ ) \mathbf{A}(\lambda) A(λ) n n n λ \lambda λ矩阵, a 11 ( λ ) ≠ 0 a_{11} (\lambda) \neq 0 a11(λ)=0, 且 A ( λ ) \mathbf{A}(\lambda) A(λ) 中存在元素无法被 a 11 ( λ ) a_{11}(\lambda) a11(λ) 整除, 则存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) ≠ 0 a_{11}'(\lambda) \neq 0 a11(λ)=0, d e g   a 11 ′ ( λ ) < d e g   a 11 ( λ ) \mathrm{deg}\ a'_{11}(\lambda)<\mathrm{deg} \ a_{11}(\lambda) deg a11(λ)<deg a11(λ), a 11 ′ ( λ ) a_{11}'(\lambda) a11(λ) 整除 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 的所有元素, 且第 1 1 1 行和第 1 1 1 列除 a 11 ( λ ) a_{11}(\lambda) a11(λ) 外都是 0 0 0.

证明: 根据引理2, 存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) ≠ 0 a_{11}'(\lambda) \neq 0 a11(λ)=0, d e g   a 11 ( λ ) < d e g   a 11 ( λ ) \mathrm{deg}\ a_{11}(\lambda)<\mathrm{deg} \ a_{11}(\lambda) deg a11(λ)<deg a11(λ) a 11 ′ ( λ ) a_{11}'(\lambda) a11(λ) 整除 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 的所有元素. 以 a 11 ′ ( λ ) a'_{11}(\lambda) a11(λ) 消去第 1 1 1 行和第 1 1 1 列的其他元素, 此时的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 1 1 1 行和第 1 1 1 列除 a 11 ( λ ) a_{11}(\lambda) a11(λ) 外都是 0 0 0, 由此可得此命题.

引理4. A ( λ ) \mathbf{A}(\lambda) A(λ) n n n λ \lambda λ矩阵, A ( λ ) ≠ 0 \mathbf{A}(\lambda) \neq \mathbf{0} A(λ)=0, 则存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) ≠ 0 a'_{11}(\lambda) \neq 0 a11(λ)=0.

证明: 若 a 11 ( λ ) = 0 a_{11}(\lambda)=0 a11(λ)=0, 则 A ( λ ) \mathbf{A}(\lambda) A(λ) 的元素中必然存在 a i j ( λ ) ≠ 0 a_{ij}(\lambda) \neq 0 aij(λ)=0, 交换第 i i i 行和第 1 1 1 行, 交换第 j j j 列和第 1 1 1 列, 此时 a 11 ( λ ) ≠ 0 a_{11}(\lambda) \neq 0 a11(λ)=0. 此时令 A ′ ( λ ) = A ( λ ) \mathbf{A}'(\lambda)=\mathbf{A}(\lambda) A(λ)=A(λ) 即可得此命题.

存在性的证明: 当 A ( λ ) = 0 \mathbf{A}(\lambda)=\mathbf{0} A(λ)=0 时结论显然成立, 下面证明当 A ( λ ) ≠ 0 \mathbf{A}(\lambda)\neq \mathbf{0} A(λ)=0 时结论成立. 采用数学归纳法进行证明. 当 n = 1 n=1 n=1 时, S ( λ ) = A ( λ ) \mathbf{S}(\lambda)=\mathbf{A}(\lambda) S(λ)=A(λ) 即为所求. 若当 n = k n=k n=k 时结论成立. 当 n = k + 1 n=k+1 n=k+1 时, 根据引理4, 存在与之相抵的 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ), 其中 a 11 ′ ( λ ) ≠ 0 a'_{11}(\lambda) \neq 0 a11(λ)=0. 由引理3易知: 存在与 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 相抵的 A ′ ′ ( λ ) \mathbf{A}''(\lambda) A′′(λ), 其中 a 11 ′ ′ ( λ ) ≠ 0 a_{11}''(\lambda) \neq 0 a11′′(λ)=0, a 11 ′ ′ ( λ ) a_{11}''(\lambda) a11′′(λ) 整除 A ′ ′ ( λ ) \mathbf{A}''(\lambda) A′′(λ) 的所有元素, 且第1行和第1列除 a 11 ′ ′ ( λ ) a_{11}''(\lambda) a11′′(λ) 外都是 0 0 0. 设

A ′ ′ ( λ ) = [ a 11 ( λ ) 0 0 A 1 ( λ ) ] \mathbf{A}''(\lambda)=\begin{bmatrix} a_{11}(\lambda) & \mathbf{0} & \\ \mathbf{0} & \mathbf{A}_{1}(\lambda) \end{bmatrix} A′′(λ)=[a11(λ)00A1(λ)]

r a n k   A ′ ′ ( λ ) = r a n k ( [ a 11 ( λ ) ] ) + r a n k   A 1 ( λ ) = r \mathrm{rank} \ \mathbf{A}''(\lambda)=\mathrm{rank} ([a_{11}(\lambda)])+\mathrm{rank}\ \mathbf{A}_{1}(\lambda)=r rank A′′(λ)=rank([a11(λ)])+rank A1(λ)=r, 因此 r a n k   A 1 ( λ ) = r − 1 \mathrm{rank}\ \mathbf{A}_{1}(\lambda)=r-1 rank A1(λ)=r1. 根据归纳假设, 存在 k k k λ \lambda λ-矩阵 S 1 ( λ ) \mathbf{S}_{1}(\lambda) S1(λ) 满足:

S 1 ( λ ) = d i a g { d 1 ( λ ) , . . . , d r − 1 ( λ ) , 0 , . . . , 0 } ≃ A 1 ( λ ) \mathbf{S}_{1}(\lambda)=\mathrm{diag} \{d_1(λ), ..., d_{r-1}(λ), 0, ..., 0\} \simeq \mathbf{A}_{1}(\lambda) S1(λ)=diag{d1(λ),...,dr1(λ),0,...,0}A1(λ)

其中 d i ( λ ) d_i(λ) di(λ) 是首项系数为 1 1 1 的多项式,且 d i − 1 ( λ ) d_{i-1}(λ) di1(λ) 能整除 d i ( λ ) d_{i}(λ) di(λ), i = 2 , . . . , r − 1 i=2,...,r-1 i=2,...,r1. 由此可知:

A ′ ′ ( λ ) ≃ [ a 11 ( λ ) 0 0 S 1 ( λ ) ] ≡ S ( λ ) \mathbf{A}''(\lambda)\simeq \begin{bmatrix} a_{11}(\lambda) & \mathbf{0} & \\ \mathbf{0} & \mathbf{S}_{1}(\lambda) \end{bmatrix} \equiv \mathbf{S}(\lambda) A′′(λ)[a11(λ)00S1(λ)]S(λ)

进而有 A ( λ ) ≃ S ( λ ) \mathbf{A}(\lambda)\simeq \mathbf{S}(\lambda) A(λ)S(λ), a 11 ( λ ) ∣ d i ( λ ) a_{11}(\lambda)|d_{i}(\lambda) a11(λ)di(λ), i = 1 , . . . , r − 1 i=1,...,r-1 i=1,...,r1. 由此可得此命题.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值