2023IMO预选题几何第6题

锐角 △ A B C \triangle ABC ABC 的外接圆为 ω \omega ω, 圆 I I I ω \omega ω 内切于 A A A, 且与 B C BC BC 切于点 D D D. 设直线 A B AB AB, A C AC AC 分别与 I I I 交于点 P P P, Q Q Q, 点 M M M, N N N 在直线 B C BC BC 上, 满足 B B B D M DM DM 的中点, C C C D N DN DN 的中点. 设直线 M P MP MP, N Q NQ NQ 交于点 K K K, 且分别与 I I I 交于点 I I I, J J J, 射线 K A KA KA △ I J K △ IJK IJK 的外接圆交于另一点 X X X. 求证: ∠ B X P = ∠ C X Q \angle BXP=\angle CXQ BXP=CXQ.

在这里插入图片描述

证明:

在这里插入图片描述

证明 X M XM XM 平行于 A B AB AB, X N XN XN 平行于 A C AC AC :

易知 P Q / / B C PQ//BC PQ//BC,

∠ K X J = ∠ K J I = ∠ K P Q = ∠ K M N \angle KXJ=\angle KJI=\angle KPQ =\angle KMN KXJ=KJI=KPQ=KMN

∴ X \therefore X X, J J J, D D D, M M M 共圆, K J ⋅ K M = K X ⋅ K D KJ \cdot KM=KX \cdot KD KJKM=KXKD.

其中, K J = K D ⋅ A K K P KJ= \frac{KD\cdot AK}{KP} KJ=KPKDAK.

∴ K X = K M K P ⋅ A K \therefore KX= \frac{KM}{KP}\cdot AK KX=KPKMAK.

∴ X M \therefore XM XM 平行于 A B AB AB

同理, X N XN XN 平行于 A C AC AC.

∴ X D \therefore XD XD 平分 ∠ M X N \angle MXN MXN

( A P Q ) (APQ) (APQ) 的圆心为 T T T. 则 T D TD TD ⊥ \bot P Q PQ PQ, 进而可知 P D = Q D PD=QD PD=QD.

证明 △ P X D ∼ △ C X N \triangle PXD\sim \triangle CXN PXDCXN :

∠ P D X = ∠ P Q A = ∠ A C B = ∠ C N X \angle PDX=\angle PQA=\angle ACB=\angle CNX PDX=PQA=ACB=CNX

X N X D = A C A D \frac{{X}N}{XD}=\frac{AC}{AD} XDXN=ADAC

由相切可知, △ D C Q ∼ △ A C D \triangle DCQ \sim \triangle ACD DCQACD, A C A D = C P D Q = P D C N \frac{AC}{AD}=\frac{CP}{DQ}=\frac{PD}{CN} ADAC=DQCP=CNPD

∴ △ P X D ∼ △ C X N \therefore \triangle PXD\sim \triangle CXN PXDCXN.

∴ ∠ P X C = ∠ D X N = 1 2 ∠ B A C \therefore \angle P XC=\angle D X N = \frac {1 } {2} \angle BAC PXC=DXN=21BAC.

同理 ∠ Q X B = 1 2 ∠ B A C \angle Q X B = \frac {1 } {2} \angle B A C QXB=21BAC, 证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值