锐角非等腰三角形 A B C ABC ABC 的垂心为 H H H. 设直线 l a l_a la 经过 B B B 关于 C H CH CH 的对称点和 C C C 关于 B H BH BH 的对称点, 同理定义直线 l b l_b lb, l c l_c lc. 设三条直线围成三角形 T T T, 求证: H H H 在 T T T 的欧拉线上.
证明:
证明 C A A C C_AA_C CAAC 和 A B B A A_BB_A ABBA 交点(设为 A ′ A' A′) 在 c 1 c_1 c1 上:
显然, △ A B C ≃ △ A B A C A \triangle ABC \simeq \triangle AB_AC_A △ABC≃△ABACA, 设 c 1 c_1 c1 交 A B A AB_A ABA 于 X X X, 则 X X X 与 A C A_C AC 关于 A H AH AH 对称, ∠ A H A B = 2 ∠ A C B \angle AHA_B=2\angle ACB ∠AHAB=2∠ACB, ∠ A X A B = π − ∠ A B C = π − ∠ A B A C \angle AXA_B=\pi-\angle ABC=\pi-\angle AB_AC ∠AXAB=π−∠ABC=π−∠ABAC, 因此 X X X 在 ( A B C B A ) (A_BCB_A) (ABCBA) 上, ∠ C X B A = ∠ C A ) B B A = ∠ C A A C B \angle CXB_A=\angle CA)BB_A=\angle C_AA_CB ∠CXBA=∠CA)BBA=∠CAACB, 因此 ∠ C A A B A = ∠ C A A ′ B A = ∠ B A C \angle C_AAB_A=\angle C_AA'B_A=\angle BAC ∠C