2023IMO预选题几何第7题

锐角非等腰三角形 A B C ABC ABC 的垂心为 H H H. 设直线 l a l_a la 经过 B B B 关于 C H CH CH 的对称点和 C C C 关于 B H BH BH 的对称点, 同理定义直线 l b l_b lb, l c l_c lc. 设三条直线围成三角形 T T T, 求证: H H H T T T 的欧拉线上.

在这里插入图片描述
证明:

在这里插入图片描述

证明 C A A C C_AA_C CAAC A B B A A_BB_A ABBA 交点(设为 A ′ A' A) 在 c 1 c_1 c1 上:
显然, △ A B C ≃ △ A B A C A \triangle ABC \simeq \triangle AB_AC_A ABCABACA, 设 c 1 c_1 c1 A B A AB_A ABA X X X, 则 X X X A C A_C AC 关于 A H AH AH 对称, ∠ A H A B = 2 ∠ A C B \angle AHA_B=2\angle ACB AHAB=2∠ACB, ∠ A X A B = π − ∠ A B C = π − ∠ A B A C \angle AXA_B=\pi-\angle ABC=\pi-\angle AB_AC AXAB=πABC=πABAC, 因此 X X X ( A B C B A ) (A_BCB_A) (ABCBA) 上, ∠ C X B A = ∠ C A ) B B A = ∠ C A A C B \angle CXB_A=\angle CA)BB_A=\angle C_AA_CB CXBA=CA)BBA=CAACB, 因此 ∠ C A A B A = ∠ C A A ′ B A = ∠ B A C \angle C_AAB_A=\angle C_AA'B_A=\angle BAC C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值