2021IMO几何预选题第7题(最简证明)

在这里插入图片描述
△ A B C \triangle ABC ABC 中, D D D △ A B C \triangle ABC ABC 内部, 且在 ∠ B A C \angle BAC BAC 的平分线上, F F F, E E E 分别在 A B AB AB, A C AC AC 上, 且 ∠ A D F = ∠ D B C \angle ADF=\angle DBC ADF=DBC, ∠ A D E = ∠ D C B \angle ADE=\angle DCB ADE=DCB. 设 B C BC BC 的中垂线交 A C AC AC 于点 X X X. ( A D C ) (ADC) (ADC) ( X B C ) (XBC) (XBC) 的外心分别为 O 1 O_1 O1, O 2 O_2 O2. 求证: E F EF EF, O 1 O 2 O_1O_2 O1O2, B C BC BC 共点.

证明:

在这里插入图片描述

首先证明 B B B, F F F, E E E, C C C 四点共圆. 设 D D D 的等角共轭点为 D ′ D' D, 则 D ′ D' D A D AD AD 上, ∠ A D F = ∠ D B C = ∠ D ′ B A \angle ADF=\angle DBC=\angle D'BA ADFDBC=DBA, 所以 D ′ D'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值