△ A B C \triangle ABC △ABC 中, D D D 在 △ A B C \triangle ABC △ABC 内部, 且在 ∠ B A C \angle BAC ∠BAC 的平分线上, F F F, E E E 分别在 A B AB AB, A C AC AC 上, 且 ∠ A D F = ∠ D B C \angle ADF=\angle DBC ∠ADF=∠DBC, ∠ A D E = ∠ D C B \angle ADE=\angle DCB ∠ADE=∠DCB. 设 B C BC BC 的中垂线交 A C AC AC 于点 X X X. ( A D C ) (ADC) (ADC) 和 ( X B C ) (XBC) (XBC) 的外心分别为 O 1 O_1 O1, O 2 O_2 O2. 求证: E F EF EF, O 1 O 2 O_1O_2 O1O2, B C BC BC 共点.
证明:
首先证明 B B B, F F F, E E E, C C C 四点共圆. 设 D D D 的等角共轭点为 D ′ D' D′, 则 D ′ D' D′ 在 A D AD AD 上, ∠ A D F = ∠ D B C = ∠ D ′ B A \angle ADF=\angle DBC=\angle D'BA ∠ADF=∠DBC=∠D′BA, 所以 D ′ D'