2012年西部数学奥林匹克试题(几何)

2012/G1

在这里插入图片描述

△ A B C \triangle ABC ABC 内有一点 P P P, P P P A B AB AB, A C AC AC 上的投影分别为 E E E, F F F, 射线 B P BP BP, C P CP CP 分别交 △ A B C \triangle ABC ABC 的外接圆于点 M M M, N N N. r r r △ A B C \triangle ABC ABC 的内切圆半径, R R R △ A B C \triangle ABC ABC 的外接圆半径. 求证: E F / M N ≥ r / R EF/MN \geq r/R EF/MNr/R.

证明: 设 P P P B C BC BC 上的投影为点 D D D.设 S S S S △ A B C S_{\triangle ABC} SABC. 延长 A P AP AP ( A B C ) (ABC) (ABC) 于点 L L L.

在这里插入图片描述

P P P 位于内心 I I I 时, 易证明 E F EF EF ( A B C ) (ABC) (ABC) 中, M N MN MN ⨀ I \bigodot I I 中所对的圆周角 (锐角) 大小都为 π / 2 − A / 2 \pi/2-A/2 π/2A/2. 此时 E F / M N = r / R EF/MN=r/R EF/MN=r/R.

在这里插入图片描述

下证当 P P P 不位于内心位置时, E F / M N > r / R EF/MN>r/R EF/MN>r/R.

△ L M N ∼ △ D E F \triangle LMN \sim \triangle DEF LMNDEF (证明略), 进而 E F / M N = r ′ / R EF/MN=r'/R EF/MN=r/R. ( r ′ r' r ( D E F ) (DEF) (DEF) 的半径), 要证明 E F / M N > r / R EF/MN>r/R EF/MN>r/R, 只需证明 r ′ > r r'>r r>r.

在这里插入图片描述

△ D E F \triangle DEF DEF 的外心为 O ′ O' O.

S = S △ O ′ A B + S △ O ′ A C + S △ O ′ B C = 1 2 ( B C ⋅ d (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值