在
△
A
B
C
\triangle ABC
△ABC 中,
D
D
D,
E
E
E 分别是
A
B
AB
AB,
A
C
AC
AC 上的点, 使得
B
C
/
/
D
E
BC//DE
BC//DE.
P
P
P 是四边形
D
E
C
B
DECB
DECB 内一点, 使得
D
B
=
D
P
DB=DP
DB=DP,
E
C
=
E
P
EC=EP
EC=EP.
M
M
M 为
B
C
BC
BC 的中点, 且
∠
D
P
B
=
∠
E
M
C
\angle DPB=\angle EMC
∠DPB=∠EMC. 求证:
∠
D
M
B
=
∠
E
P
C
\angle DMB=\angle EPC
∠DMB=∠EPC.
证明:
首先证明 D D D, A A A, E E E, P P P 共圆.
设 ( D P B ) (DPB) (DPB) 交 B C BC BC 于 H H H, B B B. 设以 D D D 为圆心, D H DH DH 为半径的圆交 B C BC BC 于 H H H, H 1 H_1 H1.
易知 D H = D H 1 DH=DH_1 DH=DH1, D P = D B 1 DP=DB_1 DP=DB1, ∠ H 1 D B = ∠ P D H \angle H_1DB=\angle PDH ∠H1DB=∠PDH. 则 △ D P H ≃ △ D B H 1 \triangle DPH \simeq \triangle DBH_1 △DPH≃△DBH1. P H = H 1 B PH=H_1B PH=H1B.
∠ D H 1 B = ∠ D H B = ∠ D P B = ∠ E M H 1 \angle DH_1B=\angle DHB=\angle DPB=\angle EMH_1 ∠DH1B=∠DHB=∠DPB=∠EMH1, E M / / D H 1 EM//DH_1 EM//DH1, 进而四边形 D E M H 1 DEMH_1 DEMH1 为平行四边形, D E = M H 1 DE=MH_1 DE=MH1.
延长 H M HM HM 至点 H 2 H_2 H2, 使得 H 2 C = H P H_2C=HP H2C=HP.
显然 M H 2 = M H 1 = D E MH_2=MH_1=DE MH2=MH1=DE, 进而可知四边形 D E H 2 H DEH_2H DEH2H 为平行四边形, D M = E H 2 = H E DM=EH_2=HE DM=EH2=HE.
△ E P H ≃ △ E C H 2 \triangle EPH \simeq \triangle ECH_2 △EPH≃△ECH2.
∠ D P H + ∠ E P H = 2 π − ∠ A B C − ∠ A C B = π − ∠ B A C \angle DPH+\angle EPH=2\pi-\angle ABC-\angle ACB=\pi-\angle BAC ∠DPH+∠EPH=2π−∠ABC−∠ACB=π−∠BAC, D D D, A A A, E E E, P P P 共圆.
∠ P H C = ∠ D P B = A E P \angle PHC=\angle DPB=AEP ∠PHC=∠DPB=AEP, 所以 E E E, P P P, H H H, C C C 共圆, 进而 ∠ E P C = ∠ E H C = ∠ D M B \angle EPC=\angle EHC=\angle DMB ∠EPC=∠EHC=∠DMB.
证毕.
H D HD HD 平分 ∠ P H B \angle PHB ∠PHB 和 H E HE HE 平分 ∠ P H C \angle PHC ∠PHC 可知 ∠ D H E = π 2 \angle DHE=\frac{\pi}{2} ∠DHE=2π.
2025年1月13日