2015年香港数学奥林匹克几何试题

△ A B C \triangle ABC ABC 中, D D D, E E E 分别是 A B AB AB, A C AC AC 上的点, 使得 B C / / D E BC//DE BC//DE. P P P 是四边形 D E C B DECB DECB 内一点, 使得 D B = D P DB=DP DB=DP, E C = E P EC=EP EC=EP. M M M B C BC BC 的中点, 且 ∠ D P B = ∠ E M C \angle DPB=\angle EMC DPB=EMC. 求证: ∠ D M B = ∠ E P C \angle DMB=\angle EPC DMB=EPC.
在这里插入图片描述
证明:

在这里插入图片描述

首先证明 D D D, A A A, E E E, P P P 共圆.

( D P B ) (DPB) (DPB) B C BC BC H H H, B B B. 设以 D D D 为圆心, D H DH DH 为半径的圆交 B C BC BC H H H, H 1 H_1 H1.

易知 D H = D H 1 DH=DH_1 DH=DH1, D P = D B 1 DP=DB_1 DP=DB1, ∠ H 1 D B = ∠ P D H \angle H_1DB=\angle PDH H1DB=PDH. 则 △ D P H ≃ △ D B H 1 \triangle DPH \simeq \triangle DBH_1 DPHDBH1. P H = H 1 B PH=H_1B PH=H1B.

∠ D H 1 B = ∠ D H B = ∠ D P B = ∠ E M H 1 \angle DH_1B=\angle DHB=\angle DPB=\angle EMH_1 DH1B=DHB=DPB=EMH1, E M / / D H 1 EM//DH_1 EM//DH1, 进而四边形 D E M H 1 DEMH_1 DEMH1 为平行四边形, D E = M H 1 DE=MH_1 DE=MH1.

延长 H M HM HM 至点 H 2 H_2 H2, 使得 H 2 C = H P H_2C=HP H2C=HP.

显然 M H 2 = M H 1 = D E MH_2=MH_1=DE MH2=MH1=DE, 进而可知四边形 D E H 2 H DEH_2H DEH2H 为平行四边形, D M = E H 2 = H E DM=EH_2=HE DM=EH2=HE.

△ E P H ≃ △ E C H 2 \triangle EPH \simeq \triangle ECH_2 EPHECH2.

∠ D P H + ∠ E P H = 2 π − ∠ A B C − ∠ A C B = π − ∠ B A C \angle DPH+\angle EPH=2\pi-\angle ABC-\angle ACB=\pi-\angle BAC DPH+EPH=2πABCACB=πBAC, D D D, A A A, E E E, P P P 共圆.

∠ P H C = ∠ D P B = A E P \angle PHC=\angle DPB=AEP PHC=DPB=AEP, 所以 E E E, P P P, H H H, C C C 共圆, 进而 ∠ E P C = ∠ E H C = ∠ D M B \angle EPC=\angle EHC=\angle DMB EPC=EHC=DMB.

证毕.

H D HD HD 平分 ∠ P H B \angle PHB PHB H E HE HE 平分 ∠ P H C \angle PHC PHC 可知 ∠ D H E = π 2 \angle DHE=\frac{\pi}{2} DHE=2π.

2025年1月13日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值