5 过
⊙
O
\odot O
⊙O 外一点
P
P
P 作
⊙
O
\odot O
⊙O 的切线
P
A
PA
PA,
A
A
A 为切点, 过点
P
P
P 的直线交
⊙
O
\odot O
⊙O 于点
C
C
C,
D
(
P
C
<
P
D
)
D(PC<PD)
D(PC<PD), 直线
A
D
AD
AD,
A
C
AC
AC 与
⊙
(
A
O
P
)
\odot(AOP)
⊙(AOP) 的第二个交点分别为
E
E
E,
F
F
F,
P
D
PD
PD 与
E
F
EF
EF 交于点
G
G
G. 求证:
E
G
=
F
G
EG=FG
EG=FG.
证明:
设过 P P P 的另一条切线切于点 H H H. 设 ( E A P ) (EAP) (EAP) 的圆心为点 O ′ O' O′.
∠ E G D = ∠ A P F \angle EGD=\angle APF ∠EGD=∠APF, ∠ P A F = ∠ E D G \angle PAF=\angle EDG ∠PAF=∠EDG, 所以 △ F A P ∼ △ G D E \triangle FAP \sim \triangle GDE △FAP∼△GDE.
显然 △ P C H ∼ △ P H D \triangle PCH \sim \triangle PHD △PCH∼△PHD.
∠ G C H = π − ∠ P H D = ∠ H A E = ∠ G F H \angle GCH=\pi-\angle PHD=\angle HAE=\angle GFH ∠GCH=π−∠PHD=∠HAE=∠GFH. 所以 G G G, C C C, F F F, H H H 共圆.
∠ C G H = ∠ π − ∠ A F H = π − ∠ A P H = 2 ∠ P A H \angle CGH=\angle \pi-\angle AFH=\pi-\angle APH=2 \angle PAH ∠CGH=∠π−∠AFH=π−∠APH=2∠PAH.
∠ P O ′ H = 2 ∠ P A H = ∠ C G H \angle PO'H=2\angle PAH=\angle CGH ∠PO′H=2∠PAH=∠CGH. P P P, O ′ O' O′, G G G, H H H 四点共圆.
∠ O ′ G P = ∠ O ′ H P = ∠ A P H 2 \angle O'GP=\angle O'HP=\frac{\angle APH}{2} ∠O′GP=∠O′HP=2∠APH
∠ P G F = ∠ E G D = ∠ A F P = π 2 − ∠ A P H 2 \angle PGF=\angle EGD=\angle AFP=\frac{\pi}{2}-\frac{\angle APH}{2} ∠PGF=∠EGD=∠AFP=2π−2∠APH.
因为 E F EF EF 为 ⊙ O ′ \odot O' ⊙O′ 的弦且 O G ⊥ E F OG \bot EF OG⊥EF, 所以 E G = F G EG=FG EG=FG.
证毕.
还可证明 G G G, E E E, D D D, H H H 共圆. 证明略.
6 在 ⊙ O \odot O ⊙O 中任作两弦 A B AB AB, D C DC DC, 在射线 A B AB AB, D C DC DC 上分别取点 E E E, F F F, 使 A E A B = D F D C \frac {AE}{AB}=\frac {DF}{DC} ABAE=DCDF. 直线 A D AD AD 与 ⊙ ( A E C ) \odot (AEC) ⊙(AEC) 交于点 A A A, G G G, 直线 A D AD AD 与 ⊙ ( D F B ) \odot (DFB) ⊙(DFB) 交于点 D D D, H H H. 证明: A G = D H AG=DH AG=DH.
证明:
只需证明 A H ⋅ A C = D G ⋅ D A AH\cdot AC=DG\cdot DA AH⋅AC=DG⋅DA, 即 A A A 对于 ( B H D ) (BHD) (BHD) 的幂等于 D D D 对于 ( C G A ) (CGA) (CGA) 的幂. 设 ( B H D ) (BHD) (BHD) 交 A B AB AB 于 B B B, X X X. 设 ( A G C ) (AGC) (AGC) 交 C D CD CD 于 C C C, Y Y Y.
设 A B AB AB, C D CD CD 交于 I I I.
∠ E Y F = ∠ B D C = ∠ B A C = ∠ E X F \angle EYF=\angle BDC=\angle BAC=\angle EXF ∠EYF=∠BDC=∠BAC=∠EXF.
所以 E E E, F F F, Y Y Y, X X X 共圆. X F / / A C XF//AC XF//AC, Y E / / B D YE//BD YE//BD.
A X / C F = I X / I F AX/CF=IX/IF AX/CF=IX/IF, D Y / B E = I Y / I E DY/BE=IY/IE DY/BE=IY/IE.
I X ⋅ I E = I Y ⋅ I F IX \cdot IE=IY \cdot IF IX⋅IE=IY⋅IF.
所以 A X / C F = D Y / B E AX/CF=DY/BE AX/CF=DY/BE, 即 A X / D Y = C F / B E = D C / A B AX/DY=CF/BE=DC/AB AX/DY=CF/BE=DC/AB.
进而 A B ⋅ A X = D C ⋅ D Y AB\cdot AX=DC\cdot DY AB⋅AX=DC⋅DY, 即 A A A 对于 ( B H D ) (BHD) (BHD) 的幂等于 D D D 对于 ( C G A ) (CGA) (CGA) 的幂.
证毕.
7 在
△
A
B
C
\triangle ABC
△ABC 中,
I
I
I 为内心, 在
△
A
B
C
\triangle ABC
△ABC 的外接圆的
B
C
⌢
\overset{\LARGE{\frown}}{BC}
BC⌢ (不含点
A
A
A )上取点
D
D
D, 线段
A
D
AD
AD 交
⊙
(
I
B
C
)
\odot(IBC)
⊙(IBC) 于点
P
P
P, 作
D
E
/
/
A
B
DE//AB
DE//AB 交
B
C
BC
BC 于点
E
E
E,
P
F
/
/
A
C
PF//AC
PF//AC 交
B
C
BC
BC 于点
F
F
F. 证明:
∠
E
D
F
=
9
0
∘
−
1
2
∠
B
A
C
\angle EDF=90^{\circ}-\frac{1}{2}\angle BAC
∠EDF=90∘−21∠BAC.
证明:
∠ P E C = ∠ A B C = ∠ A D C \angle PEC=\angle ABC=\angle ADC ∠PEC=∠ABC=∠ADC, 所以 P P P, E E E, D D D, C C C 共圆.
同理, P P P, F F F, D D D, B B B 共圆.
∠ E D F = ∠ B D F + ∠ C D E − ∠ B D C \angle EDF=\angle BDF+\angle CDE-\angle BDC ∠EDF=∠BDF+∠CDE−∠BDC
∠ B D F + ∠ C D E = 2 π − ∠ B P F − ∠ C P E = 2 π − ∠ B P C − ∠ E P F \angle BDF+\angle CDE=2\pi-\angle BPF-\angle CPE=2\pi-\angle BPC-\angle EPF ∠BDF+∠CDE=2π−∠BPF−∠CPE=2π−∠BPC−∠EPF
∠ B P C = π 2 + ∠ B A C 2 \angle BPC=\frac{\pi}{2}+\frac{\angle BAC}{2} ∠BPC=2π+2∠BAC
∠ E P F = ∠ B A C \angle EPF=\angle BAC ∠EPF=∠BAC
∠ B D C = π − ∠ B A C \angle BDC=\pi-\angle BAC ∠BDC=π−∠BAC
所以 ∠ B D F + ∠ C D E − ∠ B D C = π 2 − ∠ ∠ B A C 2 + ∠ B D C \angle BDF+\angle CDE-\angle BDC=\frac{\pi}{2}-\angle {\angle BAC}{2}+\angle BDC ∠BDF+∠CDE−∠BDC=2π−∠∠BAC2+∠BDC
∠ E D F = π 2 − ∠ ∠ B A C 2 \angle EDF=\frac{\pi}{2}-\angle {\angle BAC}{2} ∠EDF=2π−∠∠BAC2
证毕.
8 在 △ A B C \triangle ABC △ABC 中, I I I 为内心, 在 △ A B C \triangle ABC △ABC 的外接圆的 B C ⌢ \overset{\LARGE{\frown}}{BC} BC⌢ (不含点 A A A )上取点 D D D, 线段 A D AD AD 交 ⊙ ( I B C ) \odot(IBC) ⊙(IBC) 于点 P P P, 作 P E / / A B PE//AB PE//AB 交 B C BC BC 于点 E E E. 证明: P E P D = A P A C \frac{PE}{PD}=\frac{AP}{AC} PDPE=ACAP.
证明:
( I B C ) (IBC) (IBC) 关于 A I AI AI 对称 (证明略)
设 B B B 关于 A I AI AI 的对称点为 B ′ B' B′, 则 A B ′ = A B AB'=AB AB′=AB.
延长 A D AD AD 交 ( I B C ) (IBC) (IBC) 于 F F F.
∠ P E C = ∠ A B C = ∠ A D C \angle PEC=\angle ABC=\angle ADC ∠PEC=∠ABC=∠ADC, 所以 P P P, E E E, D D D, C C C 共圆.
∠ A F B = ∠ P C E = ∠ P E D \angle AFB=\angle PCE=\angle PED ∠AFB=∠PCE=∠PED, B F / / E D BF//ED BF//ED.
∠ E P D = ∠ B A F \angle EPD=\angle BAF ∠EPD=∠BAF. 所以 △ A B F ∼ △ P E D \triangle ABF \sim \triangle PED △ABF∼△PED.
P E / P D = A B / A F = A B ′ / A F PE/PD=AB/AF=AB'/AF PE/PD=AB/AF=AB′/AF
A B ′ ⋅ A C = A P ⋅ A F AB' \cdot AC=AP \cdot AF AB′⋅AC=AP⋅AF
所以 A B ′ / A F = A P / A C AB'/AF=AP/AC AB′/AF=AP/AC
证毕.
9 已知 △ A B C \triangle ABC △ABC, 点 D D D 在 A B AB AB 的延长线上, 点 E E E 在边 C A CA CA 上, 满足 B D = C E BD = CE BD=CE. B C BC BC 的中垂线交 △ A D E \triangle ADE △ADE 的外接圆于点 P P P, D E DE DE 的中垂线交 △ A B C \triangle ABC △ABC 的外接圆于点 K K K. 求证: ∠ B A K = ∠ C A P \angle BAK = \angle CAP ∠BAK=∠CAP.
证明:
设 ( A B C ) (ABC) (ABC) 交 ( A D E ) (ADE) (ADE) 于 A A A, H H H.
∠ D H E = ∠ B H C \angle DHE=\angle BHC ∠DHE=∠BHC, 所以 ∠ B H D = ∠ C H E \angle BHD=\angle CHE ∠BHD=∠CHE
结合 ∠ H E C = ∠ B D H \angle HEC=\angle BDH ∠HEC=∠BDH, B D = C E BD=CE BD=CE, 可知 △ B D H ≃ △ C E H \triangle BDH \simeq \triangle CEH △BDH≃△CEH.
所以 C H = E H CH=EH CH=EH. D H = E H DH=EH DH=EH.
显然 H H H 在 B C BC BC 和 D E DE DE 的中垂线上.
要证 ∠ B A K = ∠ C A P \angle BAK = \angle CAP ∠BAK=∠CAP, 只需证 ∠ B H P = ∠ K H E \angle BHP = \angle KHE ∠BHP=∠KHE
这显然成立.
证毕.