《平面几何强化训练题集》第2章5到9题

《平面几何强化训练题集》

5 过 ⊙ O \odot O O 外一点 P P P ⊙ O \odot O O 的切线 P A PA PA, A A A 为切点, 过点 P P P 的直线交 ⊙ O \odot O O 于点 C C C, D ( P C < P D ) D(PC<PD) D(PC<PD), 直线 A D AD AD, A C AC AC ⊙ ( A O P ) \odot(AOP) (AOP) 的第二个交点分别为 E E E, F F F, P D PD PD E F EF EF 交于点 G G G. 求证: E G = F G EG=FG EG=FG.
在这里插入图片描述

证明:

在这里插入图片描述

设过 P P P 的另一条切线切于点 H H H. 设 ( E A P ) (EAP) (EAP) 的圆心为点 O ′ O' O.

∠ E G D = ∠ A P F \angle EGD=\angle APF EGD=APF, ∠ P A F = ∠ E D G \angle PAF=\angle EDG PAF=EDG, 所以 △ F A P ∼ △ G D E \triangle FAP \sim \triangle GDE FAPGDE.

显然 △ P C H ∼ △ P H D \triangle PCH \sim \triangle PHD PCHPHD.

∠ G C H = π − ∠ P H D = ∠ H A E = ∠ G F H \angle GCH=\pi-\angle PHD=\angle HAE=\angle GFH GCH=πPHD=HAE=GFH. 所以 G G G, C C C, F F F, H H H 共圆.

在这里插入图片描述

∠ C G H = ∠ π − ∠ A F H = π − ∠ A P H = 2 ∠ P A H \angle CGH=\angle \pi-\angle AFH=\pi-\angle APH=2 \angle PAH CGH=πAFH=πAPH=2∠PAH.

∠ P O ′ H = 2 ∠ P A H = ∠ C G H \angle PO'H=2\angle PAH=\angle CGH POH=2∠PAH=CGH. P P P, O ′ O' O, G G G, H H H 四点共圆.

∠ O ′ G P = ∠ O ′ H P = ∠ A P H 2 \angle O'GP=\angle O'HP=\frac{\angle APH}{2} OGP=OHP=2APH

∠ P G F = ∠ E G D = ∠ A F P = π 2 − ∠ A P H 2 \angle PGF=\angle EGD=\angle AFP=\frac{\pi}{2}-\frac{\angle APH}{2} PGF=EGD=AFP=2π2APH.

因为 E F EF EF ⊙ O ′ \odot O' O 的弦且 O G ⊥ E F OG \bot EF OGEF, 所以 E G = F G EG=FG EG=FG.

证毕.

还可证明 G G G, E E E, D D D, H H H 共圆. 证明略.

6 在 ⊙ O \odot O O 中任作两弦 A B AB AB, D C DC DC, 在射线 A B AB AB, D C DC DC 上分别取点 E E E, F F F, 使 A E A B = D F D C \frac {AE}{AB}=\frac {DF}{DC} ABAE=DCDF. 直线 A D AD AD ⊙ ( A E C ) \odot (AEC) (AEC) 交于点 A A A, G G G, 直线 A D AD AD ⊙ ( D F B ) \odot (DFB) (DFB) 交于点 D D D, H H H. 证明: A G = D H AG=DH AG=DH.

在这里插入图片描述

证明:

在这里插入图片描述

只需证明 A H ⋅ A C = D G ⋅ D A AH\cdot AC=DG\cdot DA AHAC=DGDA, 即 A A A 对于 ( B H D ) (BHD) (BHD) 的幂等于 D D D 对于 ( C G A ) (CGA) (CGA) 的幂. 设 ( B H D ) (BHD) (BHD) A B AB AB B B B, X X X. 设 ( A G C ) (AGC) (AGC) C D CD CD C C C, Y Y Y.

A B AB AB, C D CD CD 交于 I I I.

∠ E Y F = ∠ B D C = ∠ B A C = ∠ E X F \angle EYF=\angle BDC=\angle BAC=\angle EXF EYF=BDC=BAC=EXF.

所以 E E E, F F F, Y Y Y, X X X 共圆. X F / / A C XF//AC XF//AC, Y E / / B D YE//BD YE//BD.

A X / C F = I X / I F AX/CF=IX/IF AX/CF=IX/IF, D Y / B E = I Y / I E DY/BE=IY/IE DY/BE=IY/IE.

I X ⋅ I E = I Y ⋅ I F IX \cdot IE=IY \cdot IF IXIE=IYIF.

所以 A X / C F = D Y / B E AX/CF=DY/BE AX/CF=DY/BE, 即 A X / D Y = C F / B E = D C / A B AX/DY=CF/BE=DC/AB AX/DY=CF/BE=DC/AB.

进而 A B ⋅ A X = D C ⋅ D Y AB\cdot AX=DC\cdot DY ABAX=DCDY, 即 A A A 对于 ( B H D ) (BHD) (BHD) 的幂等于 D D D 对于 ( C G A ) (CGA) (CGA) 的幂.

证毕.

7 在 △ A B C \triangle ABC ABC 中, I I I 为内心, 在 △ A B C \triangle ABC ABC 的外接圆的 B C ⌢ \overset{\LARGE{\frown}}{BC} BC (不含点 A A A )上取点 D D D, 线段 A D AD AD ⊙ ( I B C ) \odot(IBC) (IBC) 于点 P P P, 作 D E / / A B DE//AB DE//AB B C BC BC 于点 E E E, P F / / A C PF//AC PF//AC B C BC BC 于点 F F F. 证明: ∠ E D F = 9 0 ∘ − 1 2 ∠ B A C \angle EDF=90^{\circ}-\frac{1}{2}\angle BAC EDF=9021BAC.
在这里插入图片描述

证明:

在这里插入图片描述

∠ P E C = ∠ A B C = ∠ A D C \angle PEC=\angle ABC=\angle ADC PEC=ABC=ADC, 所以 P P P, E E E, D D D, C C C 共圆.

同理, P P P, F F F, D D D, B B B 共圆.

∠ E D F = ∠ B D F + ∠ C D E − ∠ B D C \angle EDF=\angle BDF+\angle CDE-\angle BDC EDF=BDF+CDEBDC

∠ B D F + ∠ C D E = 2 π − ∠ B P F − ∠ C P E = 2 π − ∠ B P C − ∠ E P F \angle BDF+\angle CDE=2\pi-\angle BPF-\angle CPE=2\pi-\angle BPC-\angle EPF BDF+CDE=2πBPFCPE=2πBPCEPF

∠ B P C = π 2 + ∠ B A C 2 \angle BPC=\frac{\pi}{2}+\frac{\angle BAC}{2} BPC=2π+2BAC

∠ E P F = ∠ B A C \angle EPF=\angle BAC EPF=BAC

∠ B D C = π − ∠ B A C \angle BDC=\pi-\angle BAC BDC=πBAC

所以 ∠ B D F + ∠ C D E − ∠ B D C = π 2 − ∠ ∠ B A C 2 + ∠ B D C \angle BDF+\angle CDE-\angle BDC=\frac{\pi}{2}-\angle {\angle BAC}{2}+\angle BDC BDF+CDEBDC=2πBAC2+BDC

∠ E D F = π 2 − ∠ ∠ B A C 2 \angle EDF=\frac{\pi}{2}-\angle {\angle BAC}{2} EDF=2πBAC2

证毕.

8 在 △ A B C \triangle ABC ABC 中, I I I 为内心, 在 △ A B C \triangle ABC ABC 的外接圆的 B C ⌢ \overset{\LARGE{\frown}}{BC} BC (不含点 A A A )上取点 D D D, 线段 A D AD AD ⊙ ( I B C ) \odot(IBC) (IBC) 于点 P P P, 作 P E / / A B PE//AB PE//AB B C BC BC 于点 E E E. 证明: P E P D = A P A C \frac{PE}{PD}=\frac{AP}{AC} PDPE=ACAP.

在这里插入图片描述

证明:

在这里插入图片描述

( I B C ) (IBC) (IBC) 关于 A I AI AI 对称 (证明略)

B B B 关于 A I AI AI 的对称点为 B ′ B' B, 则 A B ′ = A B AB'=AB AB=AB.

延长 A D AD AD ( I B C ) (IBC) (IBC) F F F.

∠ P E C = ∠ A B C = ∠ A D C \angle PEC=\angle ABC=\angle ADC PEC=ABC=ADC, 所以 P P P, E E E, D D D, C C C 共圆.

∠ A F B = ∠ P C E = ∠ P E D \angle AFB=\angle PCE=\angle PED AFB=PCE=PED, B F / / E D BF//ED BF//ED.

∠ E P D = ∠ B A F \angle EPD=\angle BAF EPD=BAF. 所以 △ A B F ∼ △ P E D \triangle ABF \sim \triangle PED ABFPED.

P E / P D = A B / A F = A B ′ / A F PE/PD=AB/AF=AB'/AF PE/PD=AB/AF=AB/AF

A B ′ ⋅ A C = A P ⋅ A F AB' \cdot AC=AP \cdot AF ABAC=APAF

所以 A B ′ / A F = A P / A C AB'/AF=AP/AC AB/AF=AP/AC

证毕.

9 已知 △ A B C \triangle ABC ABC, 点 D D D A B AB AB 的延长线上, 点 E E E 在边 C A CA CA 上, 满足 B D = C E BD = CE BD=CE. B C BC BC 的中垂线交 △ A D E \triangle ADE ADE 的外接圆于点 P P P, D E DE DE 的中垂线交 △ A B C \triangle ABC ABC 的外接圆于点 K K K. 求证: ∠ B A K = ∠ C A P \angle BAK = \angle CAP BAK=CAP.

在这里插入图片描述

证明:

在这里插入图片描述

( A B C ) (ABC) (ABC) ( A D E ) (ADE) (ADE) A A A, H H H.

∠ D H E = ∠ B H C \angle DHE=\angle BHC DHE=BHC, 所以 ∠ B H D = ∠ C H E \angle BHD=\angle CHE BHD=CHE

结合 ∠ H E C = ∠ B D H \angle HEC=\angle BDH HEC=BDH, B D = C E BD=CE BD=CE, 可知 △ B D H ≃ △ C E H \triangle BDH \simeq \triangle CEH BDHCEH.

所以 C H = E H CH=EH CH=EH. D H = E H DH=EH DH=EH.

显然 H H H B C BC BC D E DE DE 的中垂线上.

要证 ∠ B A K = ∠ C A P \angle BAK = \angle CAP BAK=CAP, 只需证 ∠ B H P = ∠ K H E \angle BHP = \angle KHE BHP=KHE

这显然成立.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值