高中数学联赛模拟试题精选第2套几何题(改编)

△ A B C \triangle ABC ABC 中, 点 M M M 是边 A C AC AC 的中点. 在线段 A M AM AM, C M CM CM 上分别取点 P P P, Q Q Q, 使得 P Q = A C / 2 PQ=AC/2 PQ=AC/2. 设 △ A B Q \triangle ABQ ABQ 的外接圆与边 B C BC BC 相交于点 X X X, △ B C P \triangle BCP BCP 的外接圆与边 A B AB AB 相交于点 Y Y Y ( X X X, Y ≠ B Y \neq B Y=B).

证明: (1) 四边形 B X M Y BXMY BXMY 内接于圆.

(2) 设 ( A X M Y ) (AXMY) (AXMY) B C BC BC 于点 T T T, 求证: T T T ( A M X ) (AMX) (AMX) ( A M Y ) (AMY) (AMY) 的根轴上.

(选自《高中数学联赛模拟试题精选》第2套, 有改动)

在这里插入图片描述

证明: (1)

在这里插入图片描述

显然 △ P B X ∼ △ Q Y C \triangle PBX \sim \triangle QYC PBXQYC.

证明 △ P M X ∼ △ Q Y M \triangle PMX \sim \triangle QYM PMXQYM :

显然 ∠ B P X = ∠ Q Y M = ∠ B A C \angle BPX=\angle QYM=\angle BAC BPX=QYM=BAC.

显然 C Q = P M CQ=PM CQ=PM, M Q = B P MQ=BP MQ=BP, △ B X P ∼ △ Y C Q \triangle BXP \sim \triangle YCQ BXPYCQ.

P X / P B = Q C / Q Y PX/PB=QC/QY PX/PB=QC/QY.

P X ⋅ Q Y = P B ⋅ Q C = M Q ⋅ M P PX \cdot QY=PB \cdot QC=MQ \cdot MP PXQY=PBQC=MQMP.

P X / M P = M Q / Q Y PX/MP=MQ/QY PX/MP=MQ/QY.

综上, △ P M X ∼ △ Q Y M \triangle PMX \sim \triangle QYM PMXQYM.

进而易知 ∠ X M Y = π − ∠ B A C \angle XMY=\pi-\angle BAC XMY=πBAC, X X X, A A A, Y Y Y, M M M 共圆.

(2)

在这里插入图片描述

B B B 关于 P P P 的对称点为点 T ′ T' T. 则显然 T ′ Q = Q C T'Q=QC TQ=QC.

下面证明: T ′ T' T 即为 T T T.

X P ⋅ Q Y = P M ⋅ M Q = B P ⋅ C Q = P T ′ ⋅ T ′ Q XP \cdot QY=PM \cdot MQ=BP \cdot CQ=PT' \cdot T'Q XPQY=PMMQ=BPCQ=PTTQ.

结合 ∠ X P T ′ = ∠ T ′ Q Y \angle XPT'=\angle T'QY XPT=TQY, 可知 △ X P T ′ ∼ △ T ′ Q Y \triangle XPT' \sim \triangle T'QY XPTTQY.

进而易知 ∠ X T ′ Y = π − ∠ B A C \angle XT'Y=\pi-\angle BAC XTY=πBAC.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值