高中数学联赛模拟试题精选第18套几何题

△ A B C \triangle ABC ABC 中, A B < A C AB< AC AB<AC, 点 K K K, L L L, M M M 分别是边 B C BC BC, C A C A CA, A B AB AB 的中点. △ A B C \triangle ABC ABC 的内切圆圆心为 I I I, 且与边 B C BC BC 相切于点 D D D. 直线 l l l 经过线段 I D ID ID 的中点且与 I K IK IK 垂直, 与直线 L M LM LM 交于点 P P P. 证明: ∠ P I A = 9 0 ∘ \angle P I A = 90^{\circ} PIA=90.

(《高中数学联赛模拟试题精选》第18套)

证明:

在这里插入图片描述

l l l I D ID ID 于点 T T T, 交 I K IK IK 于点 Q Q Q, 延长 D I DI DI M L ML ML 于点 R R R.

显然 R R R, P P P, Q Q Q, I I I 四点共圆且 P I PI PI 为直径.

要证明 ∠ P I A = π 2 \angle PIA=\frac{\pi}{2} PIA=2π, 只需证明 A I AI AI ( R P Q ) (RPQ) (RPQ) 于点 I I I, 这等价于证明 ∠ R Q I = ∠ R I A \angle RQI=\angle RIA RQI=RIA.

在这里插入图片描述

延长 D I DI DI 交内切圆于点 S S S. 设过 S S S B C BC BC 的平行线分别交 A B AB AB, A C AC AC 于点 B ′ B' B, C ′ C' C. 设 A A A B ′ C ′ B'C' BC B C BC BC 上的投影分别为点 H ′ H' H, H H H. 设 D ′ D' D ∠ B A C \angle BAC BAC 内的旁切圆在 B C BC BC 上的切点.

显然 ∠ B ′ A C ′ ∼ △ A B C \angle B'AC' \sim \triangle ABC BACABC, ⊙ I \odot I I △ A B ′ C ′ \triangle AB'C' ABC 的旁切圆, S S S 是其在 B ′ C ′ B'C' BC 上的切点. 由此易知 S S S D ′ D' D 是对应点, 进而可知 A A A, S S S, D ′ D' D 共线.

显然 I K / / S D ′ IK//SD' IK//SD, 所以 ∠ D S D ′ = ∠ D I K \angle DSD'=\angle DIK DSD=DIK.

A S / I S = A S A H ′ A H ′ I S AS/IS = \frac{AS}{AH'} \frac{AH'}{IS} AS/IS=AHASISAH.

I R / I Q = I R I T I T I Q IR/IQ = \frac{IR}{IT} \frac{IT}{IQ} IR/IQ=ITIRIQIT.

易知 A S A H ′ = I T I Q \frac{AS}{AH'} = \frac{IT}{IQ} AHAS=IQIT.

A S A D ′ = A H ′ A H \frac{AS}{AD'} = \frac{AH'}{AH} ADAS=AHAH

I R I T = 1 2 A H − I D 1 2 I D = A H − 2 I D I D \frac{IR}{IT} = \frac{\frac{1}{2}AH-ID}{\frac{1}{2}ID}=\frac{AH-2ID}{ID} ITIR=21ID21AHID=IDAH2ID

A H ′ I S = A H − 2 I D I D = I R I T \frac{AH'}{IS} = \frac{AH-2ID}{ID} = \frac{IR}{IT} ISAH=IDAH2ID=ITIR.

综上, △ A S I ∼ △ R I Q \triangle ASI \sim \triangle RIQ ASIRIQ. 由此可知 ∠ A I S = ∠ R Q I \angle AIS=\angle RQI AIS=RQI.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值