在 △ A B C \triangle ABC △ABC 中 ( A B ≠ A C ) (AB \neq AC) (AB=AC), A T AT AT 是 ∠ B A C \angle BAC ∠BAC 的平分线, M M M 是边 B C BC BC 的中点, H H H 是垂心, H M HM HM 与 A T AT AT 相交于点 D D D. 过点 D D D 作 D E ⊥ A B DE \perp AB DE⊥AB, D F ⊥ A C DF \perp AC DF⊥AC, 垂足分别为点 E E E, F F F. 求证: E E E, H H H, F F F 三点共线. (《高中数学联赛模拟试题精选》"学数学"系列第2套)
证明:
过 H H H 作 A D AD AD 的垂线, 交 A B AB AB 于点 E ′ E' E′, 交 A C AC AC 于点 F ′ F' F′. 设 ( A E ′ F ′ ) (AE'F') (AE′F′) 交 ( A B C ) (ABC) (ABC) 于点 P P P. 设 ( A E F ) (AEF) (AEF) 交 A D AD AD 于 A A A, D ′ D' D′. 显然 D ′ D' D′ 在 A D AD AD 上, 且 ∠ D ′ E ′ A = ∠ D ′ F ′ A = π 2 \angle D'E'A=\angle D'F'A=\frac{\pi}{2} ∠D′E′A=∠D′F′A=2π.
显然 △ P E ′ B ∼ △ P F ′ C \triangle PE'B \sim \triangle PF'C △PE′B∼△PF′C, △ H E ′ B ∼ △ H F ′ C \triangle HE'B \sim \triangle HF'C △HE′B∼△HF′C.
P E ′ / P F ′ = B E ′ / C F ′ = E H ′ / F H ′ PE'/PF'=BE'/CF'=EH'/FH' PE′/PF′=BE′/CF′=EH′/FH′, 所以 P H PH PH 平分 ∠ E ′ P F ′ \angle E'PF' ∠E′PF′, 显然 D ′ P D'P D′P 也平分 ∠ E ′ P F ′ \angle E'PF' ∠E′PF′, 进而 P P P, H H H, D ′ D' D′ 三点共线.
显然 ∠ A P H = π 2 \angle APH=\frac{\pi}{2} ∠APH=2π.
延长 M H MH MH 交 ( A B C ) (ABC) (ABC) 于点 P ′ P' P′.
显然 H H H 关于 M M M 的对称点 H ′ H' H′ 在 ( A B C ) (ABC) (ABC) 上, 且为点 A A A 的对径点, 则 ∠ A P ′ H = π 2 \angle AP'H=\frac{\pi}{2} ∠AP′H=2π.
所以 P P P 和 P ′ P' P′ 都为以 A H AH AH 为直径的圆与 ( A B C ) (ABC) (ABC) 除点 A A A 外的另一交点, 所以 P ′ P' P′ 即为点 P P P.
D ′ P ⊥ A P D'P \bot AP D′P⊥AP, M H MH MH 垂直于 A P AP AP 于点 P P P, 所以 D ′ D' D′ 在 M H MH MH 上, 结合 D ′ D' D′ 在 A D AD AD 上可知 D ′ D' D′ 即为点 D D D, 进而可知 E ′ E' E′ 即为点 E E E, F ′ F' F′ 即为点 F F F,
证毕.
完稿时间: 2025年4月27日.