高中数学联赛模拟试题精选学数学系列第2套几何题

△ A B C \triangle ABC ABC ( A B ≠ A C ) (AB \neq AC) (AB=AC), A T AT AT ∠ B A C \angle BAC BAC 的平分线, M M M 是边 B C BC BC 的中点, H H H 是垂心, H M HM HM A T AT AT 相交于点 D D D. 过点 D D D D E ⊥ A B DE \perp AB DEAB, D F ⊥ A C DF \perp AC DFAC, 垂足分别为点 E E E, F F F. 求证: E E E, H H H, F F F 三点共线. (《高中数学联赛模拟试题精选》"学数学"系列第2套)

在这里插入图片描述

证明:

在这里插入图片描述

H H H A D AD AD 的垂线, 交 A B AB AB 于点 E ′ E' E, 交 A C AC AC 于点 F ′ F' F. 设 ( A E ′ F ′ ) (AE'F') (AEF) ( A B C ) (ABC) (ABC) 于点 P P P. 设 ( A E F ) (AEF) (AEF) A D AD AD A A A, D ′ D' D. 显然 D ′ D' D A D AD AD 上, 且 ∠ D ′ E ′ A = ∠ D ′ F ′ A = π 2 \angle D'E'A=\angle D'F'A=\frac{\pi}{2} DEA=DFA=2π.

显然 △ P E ′ B ∼ △ P F ′ C \triangle PE'B \sim \triangle PF'C PEBPFC, △ H E ′ B ∼ △ H F ′ C \triangle HE'B \sim \triangle HF'C HEBHFC.

P E ′ / P F ′ = B E ′ / C F ′ = E H ′ / F H ′ PE'/PF'=BE'/CF'=EH'/FH' PE/PF=BE/CF=EH/FH, 所以 P H PH PH 平分 ∠ E ′ P F ′ \angle E'PF' EPF, 显然 D ′ P D'P DP 也平分 ∠ E ′ P F ′ \angle E'PF' EPF, 进而 P P P, H H H, D ′ D' D 三点共线.

显然 ∠ A P H = π 2 \angle APH=\frac{\pi}{2} APH=2π.

延长 M H MH MH ( A B C ) (ABC) (ABC) 于点 P ′ P' P.

显然 H H H 关于 M M M 的对称点 H ′ H' H ( A B C ) (ABC) (ABC) 上, 且为点 A A A 的对径点, 则 ∠ A P ′ H = π 2 \angle AP'H=\frac{\pi}{2} APH=2π.

所以 P P P P ′ P' P 都为以 A H AH AH 为直径的圆与 ( A B C ) (ABC) (ABC) 除点 A A A 外的另一交点, 所以 P ′ P' P 即为点 P P P.

D ′ P ⊥ A P D'P \bot AP DPAP, M H MH MH 垂直于 A P AP AP 于点 P P P, 所以 D ′ D' D M H MH MH 上, 结合 D ′ D' D A D AD AD 上可知 D ′ D' D 即为点 D D D, 进而可知 E ′ E' E 即为点 E E E, F ′ F' F 即为点 F F F,

证毕.

完稿时间: 2025年4月27日.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值