高中数学联赛模拟试题精选学数学系列第1套几何题

已知 △ A B C \triangle ABC ABC 的外心为 O O O, 其外接圆直径 M N MN MN 分别交 A B AB AB, A C AC AC 于点 E E E, F F F, E E E, F F F 关于 O O O 的对称点分别为 E 1 E_{1} E1, F 1 F_{1} F1. 求证: 直线 B F 1 BF_{1} BF1 C E 1 CE_{1} CE1 的交点在 △ A B C \triangle ABC ABC 的外接圆上. (《高中数学联赛模拟试题精选》“学数学”系列第1套几何题)

在这里插入图片描述

证明:

在这里插入图片描述

只需证明 ∠ E B F 1 = ∠ F C E 1 \angle EBF_1=\angle FCE_1 EBF1=FCE1.

B B B, C C C 的对径点分别为点 B ′ B' B, C ′ C' C.

显然 △ C ′ F 1 E ≃ △ C F E 1 \triangle C'F_1E \simeq \triangle CFE_1 CF1ECFE1, △ B ′ F E 1 ≃ △ B F 1 E \triangle B'FE_1 \simeq \triangle BF_1E BFE1BF1E.

所以只需证明 ∠ E C ′ F = ∠ E 1 B ′ F \angle EC'F=\angle E_1B'F ECF=E1BF.

在这里插入图片描述

延长 C ′ E C'E CE ( A B C ) (ABC) (ABC) 于点 K K K, 设 B ′ K B'K BK A C AC AC 交于点 F ′ F' F.

由帕斯卡定理, A B AB AB C ′ K C'K CK 的交点 E E E, A C AC AC B ′ K B'K BK 的交点 F ′ F' F, 与 C C ′ CC' CC B B ′ BB' BB 的交点 O O O 三点共线, 由此可知 F ′ F' F 即为点 F F F.

在这里插入图片描述

∠ E B F 1 = ∠ F C E 1 \angle EBF_1=\angle FCE_1 EBF1=FCE1.

A A A 的对径点为点 A ′ A' A, 设 C ′ A ′ C'A' CA 交直线 E F EF EF 于点 F 1 ′ F_1' F1, B ′ A ′ B'A' BA 交直线 E F EF EF 于点 E 1 ′ E_1' E1.

显然 ∠ O C ′ F 1 ′ = ∠ O C F \angle OC'F_1'=\angle OCF OCF1=OCF, ∠ C ′ O F 1 ′ = ∠ C O F \angle C'OF_1'=\angle COF COF1=COF, O C ′ = O C OC'=OC OC=OC, 所以 △ O C ′ F 1 ′ ≃ △ O C F \triangle OC'F_1' \simeq \triangle OCF OCF1OCF. 由此可知 O F 1 ′ = O F OF_1'=OF OF1=OF, F 1 ′ F_1' F1 即为 F 1 F_1 F1.

同理, E 1 ′ E_1' E1 即为 E 1 E_1 E1.

C ′ C' C, B ′ B' B, K K K, A ′ A' A 共圆可知 ∠ E C ′ F 1 = ∠ F B ′ E 1 \angle EC'F_1=\angle FB'E_1 ECF1=FBE1.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值