YOLOv5改进Loss损失函数:改进微小目标检测的Normalized Gaussian Wasserstein Distance增强YOLOv5性能

针对YOLOv5在处理微小目标时的性能挑战,本文提出了一种改进的Loss损失函数——Normalized Gaussian Wasserstein Distance。通过将预测框和真实框表示为高斯概率分布并计算它们之间的距离,提高了微小目标检测的精度。实验结果显示,这种方法在微小目标检测方面取得了显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测是计算机视觉领域中一项重要的任务,而YOLOv5作为目标检测算法的代表之一,已经在实际应用中取得了显著的成果。然而,在处理微小目标时,YOLOv5的性能依然存在一些挑战。为了进一步提高YOLOv5在微小目标检测方面的效果,我们引入了一种改进的Loss损失函数:Normalized Gaussian Wasserstein Distance(归一化的高斯瓦瑟斯坦距离)。本文将详细介绍这一改进方法,并提供相应的源代码。

背景介绍

YOLOv5是一种基于单阶段目标检测算法的神经网络模型。它将目标检测任务转化为一个回归问题,并采用了预测框和置信度来实现目标检测。然而,由于微小目标通常具有较低的像素值和较小的尺寸,YOLOv5对微小目标的检测效果不如较大目标。因此,我们需要改进YOLOv5的Loss损失函数,以增强其在微小目标检测方面的性能。

改进的Loss损失函数

我们提出的改进的Loss损失函数基于归一化的高斯瓦瑟斯坦距离(Normalized Gaussian Wasserstein Distance)。这是一种用于测量两个概率分布之间差异的距离度量方法。在目标检测任务中,我们将其与YOLOv5的Loss损失函数相结合,以更好地处理微小目标。

归一化的高斯瓦瑟斯坦距离通过计算两个概率分布之间的最小距离来衡量它们的差异。我们将其引入YOLOv5的Loss损失函数中&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值