计算机视觉是人工智能领域中的一个重要分支,旨在使计算机能够理解和解释图像和视频数据。图像分类是计算机视觉中的一个关键任务,它涉及将图像分为不同的类别或标签。在本文中,我们将介绍如何使用深度学习技术实现图像分类,并提供相应的源代码示例。
首先,我们需要准备一个用于训练和测试的图像数据集。可以使用公开可用的数据集,例如MNIST、CIFAR-10或ImageNet。这些数据集包含大量的图像样本,每个样本都有相应的标签。
接下来,我们将使用Python编程语言和深度学习框架来构建图像分类模型。在本示例中,我们将使用TensorFlow框架。首先,我们需要导入所需的库和模块:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
然后,我们可以