POJ 1789 Truck History

戳此看题~

题目大意:

新卡车的类型编码是由第1个卡车类型编码派生出来的,新的卡车类型编码又派生出其他类型编码。类型编码由7个字符组成,每两个编码中  字符不同的位置个数 是两类型编码间的距离。派生方案的优劣值定义成1/Σ(to,td)d(to,td),求和部分 是所有类型对t0,td)的距离之和,t0是基类型,td为派生出来的类型。公司的卡车类型很多,历史学家很难判定这些类型编码间的派生关系,现在要求求出 所有派生方案优劣值 的 最高优劣值。(所有的类型编码各不相同)

优劣值最高,即式中分母最小,即 最小生成树~

AC代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 2003
int edge[N][N],lowcost[N],n;
char typ[N][10];
void init()
{
    memset(edge,0,sizeof(edge));
    int i,j,k,temp;
    for(i=0;i<n;i++)
    {
        for(j=i+1;j<n;j++)
        {
            temp=0;
            for(k=0;k<7;k++)
            temp+=typ[i][k]!=typ[j][k];
            edge[i][j]=edge[j][i]=temp;
        }
    }
    for(i=1;i<n;i++)
        lowcost[i]=edge[0][i];
    lowcost[0]=-1;
}
int  prim()
{
    int sum=0,i,j,k,min;
    for(i=1;i<n;i++)
    {
        min=1000000;
        for(j=0;j<n;j++)
        {
            if(lowcost[j]!=-1&&lowcost[j]<min)
            {
                k=j;
                min=lowcost[j];
            }
        }
        lowcost[k]=-1;
        sum+=min;
        for(j=0;j<n;j++)
        {
            if(lowcost[j]>edge[k][j])
            lowcost[j]=edge[k][j];
        }
    }
    return sum;
}
int main()
{
    int i;
    while(scanf("%d",&n)!=EOF&&n)
    {
        for(i=0;i<n;i++)
        scanf("%s",typ[i]);
        init();
        printf("The highest possible quality is 1/%d.\n",prim());
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值