AE开发第九天

今天整个水土流失定量分析系统的所有功能算是实现好啦。

今天实现的主要是因子归一化。其实因子归一化的方法和之前算植被覆盖率的方法差不多,都是重分类的方法,用数组的setValue方法即可。

 private void 因子归一化ToolStripMenuItem_Click(object sender, EventArgs e)
        {
            // 自定义的提示信息
            string customMessage1 = "请输入想要归一化的栅格";
            IRaster resultRaster = null;
            // 显示自定义提示信息
            MessageBox.Show(customMessage1, "提示", MessageBoxButtons.OK, MessageBoxIcon.Information);
            IRasterDataset rasterDataset = OpenTiffFile();
            if (rasterDataset == null)
            {
                MessageBox.Show("未选择任何TIFF文件或者打开文件失败。");
                return;
            }

            //调用 reclass 方法
            resultRaster = reclass5(rasterDataset.CreateDefaultRaster());

            IRasterLayer rasterLayer = new RasterLayerClass();
            rasterLayer.CreateFromRaster(resultRaster);
            rasterLayer.Name = "重分类";

            axMapControl2.AddLayer((ILayer)rasterLayer, 0);
            axMapControl2.ActiveView.Refresh();
            SaveRasterToFile(resultRaster);
        }
        private IRaster reclass5(IRaster pRaster)
        {
            IRasterProps rasterProps = (IRasterProps)pRaster;

            // 设置栅格数据起始点
            IPnt pBlockSize = new Pnt();
            pBlockSize.SetCoords(rasterProps.Width, rasterProps.Height);

            // 选取整个范围
            IPixelBlock pPixelBlock = pRaster.CreatePixelBlock(pBlockSize);

            // 左上点坐标
            IPnt tlp = new Pnt();
            tlp.SetCoords(0, 0);

            // 读入栅格
            IRasterBandCollection pRasterBands = pRaster as IRasterBandCollection;
            IRasterBand pRasterBand = pRasterBands.Item(0);
            IRawPixels pRawPixels = pRasterBands.Item(0) as IRawPixels;
            pRawPixels.Read(tlp, pPixelBlock);

            // 将PixBlock的值组成数组
            System.Array pSafeArray = pPixelBlock.get_SafeArray(0) as System.Array;

            // 获取像元值的最大值和最小值
            double minValue = double.MaxValue;
            double maxValue = double.MinValue;

            for (int y = 0; y < rasterProps.Height; y++)
            {
                for (int x = 0; x < rasterProps.Width; x++)
                {
                    double value = Convert.ToDouble(pSafeArray.GetValue(x, y));
                    if (value > -100000 && value < 100000) // 忽略空值
                    {
                        if (value < minValue)
                            minValue = value;
                        if (value > maxValue)
                            maxValue = value;
                    }
                }
            }

            // 设置分界值为最大值和最小值
            double lowerValue = minValue;
            double upperValue = maxValue;

            MessageBox.Show(lowerValue.ToString());
            MessageBox.Show(upperValue.ToString());

            // 对每个像元值进行重新分类
            for (int y = 0; y < rasterProps.Height; y++)
            {
                for (int x = 0; x < rasterProps.Width; x++)
                {
                    double value = Convert.ToDouble(pSafeArray.GetValue(x, y));

                    if (value == lowerValue)
                        pSafeArray.SetValue(0.0f, x, y);
                    else if (value == upperValue)
                        pSafeArray.SetValue(1.0f, x, y);
                    else if (value > lowerValue && value < upperValue)
                    {
                        double normalizedValue = (value - lowerValue) / (upperValue - lowerValue);
                        pSafeArray.SetValue((float)normalizedValue, x, y);
                    }
                    else
                    {
                        pSafeArray.SetValue(float.NaN, x, y); // 设置为空值
                    }
                }
            }

            pPixelBlock.set_SafeArray(0, pSafeArray);

            // 编辑raster,将更新的值写入raster中
            IRasterEdit rasterEdit = pRaster as IRasterEdit;
            rasterEdit.Write(tlp, pPixelBlock);
            rasterEdit.Refresh();
            return pRaster;
        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值