标题: 黄金连分数
黄金分割数0.61803... 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。
对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:
1
黄金数 = ---------------------
1
1 + -----------------
1
1 + -------------
1
1 + ---------
1 + ...
这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。
小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340
(注意尾部的0,不能忽略)
你的任务是:写出精确到小数点后100位精度的黄金分割值。
注意:尾数的四舍五入! 尾数是0也要保留!
显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
在网上看到许多是用斐波拉契数列与黄金分割数的关系来解题的。
后来找到南开大学的相关公开课,看了之后就懂了。
斐波那契数列与黄金分割(上)
当斐波拉契数列n趋近无穷时,F(n-1)/F(n)的值就是黄金分割数,即(根号5-1)/2
然后要求小数点后100位数字,这就用到了模拟手算除法。
代码如下:
#include <stdio.h>
#define F 50
int main()
{
unsigned long long int fib[1000], x, y;
int f = 0, i;
int a[105];
fib[0] = 1;
fib[1] = 1;
for(i = 2; i < 100; i++)
{
fib[i] = fib[i-1] + fib[i-2];
f++;
}
x = fib[F-2];
y = fib[F-1]; //得到两个相邻的斐波拉契数列。
for(i = 0; i < 101; i++)
{
a[i] = x / y; //这个手算技巧可以记下。
x = (x % y) * 10; //模拟手算除法,可以在草稿纸上演算一下就很明朗了。
printf("%d", a[i]);
}
printf("\n");
return 0;
}
其实这代码里面为什么取第48位和第49位,原因也没弄清楚。