T1:大大的水题,DP就行了.我不会告诉你我们伟大的jack读了一个小时才读懂题?更不会告诉你我们伟大的jack就是我们伟大的冯gei
T2:题目叫你干啥,你就干啥,就这么做.
T3:比较有意思的一道题目,我不是很会二分的方法,所以先讲述一种数学方法:
因为题目要求不能同一种礼包连续选两次,所以,我们可以把选礼包的方法组合起来选,这样就可以避免不可连续性的这一种情况.
那怎么组合呢?
很明显有最基本的三种组合选择:
①②
①③
②③
而这三种组合所对应需要减去的分值是:
2 3 1
3 2 1
3 3 0
那么,我们先做前两种情况,一直做到不能做为止,也可以理解为尽量将a,b两值相等.
举个栗子:
5 8 4
因为a<B,所以我们肯定选第一种组合.
很明显我们只能做2次(但因为这里做两次,做一次其实是选了2个方法的,所以总共选了4次)
就变成了
1 2 2
1 2 2很明显可以做本身的①一种方法,可以再选1次.
所以答案=5
再举一个栗子:
26 27 4
很明显又是A<B的情况,我们只能选第一种组合一次.
所以就变成了
24 24 3
但是这个时候,发现,a,b还可以继续选,那么我们就做分值为5,5,2的组合(其实就是组合①和组合②的组合)
选完上面这种组合后就又变成了
19 19 1
这个时候,我们可以选组合③来做,很明显可以做6次
则答案变成了
1 1 1
最后的答案又可以选一遍豪华礼包,则答案为1*2+4*1+2*6+1=19
根据这两个例子,总结一下即为:
step 1:每次判断是选组合①或组合②,选到不能选为止(尽量将A,B变成两个相等的数,有可能不相等)
step 2:判断选组合①和组合②的组合,选到不能选为止.
step 3:选组合③,选到不能选为止.
step 4:判断原来的三种礼包是否能选.
最后输出答案.
T4:
会spfa,会邻接表储存的都会做吧...
ZJZJZJ
这次比赛考的不好,第二题只能怪自己脑洞太大,明明玩过了那么多次2048,还没弄清2048的规则,哎╮(╯▽╰)╭如果之前没玩过2048的话就好了~我以为往上这么一按,根据最正常的思维,不应该全部能被加起来的都加起来吗,谁知真正的2048只加没加过的,不能重复加...............................................日
第三题则在考试的时候确实没想到把两种礼包捆绑在一起选的这种方法,只能怪自己智商还是不够咯,继续补……………………正在补……………………