[LeetCode]60. Permutation Sequence

60. Permutation Sequence

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

"123"
"132"
"213"
"231"
"312"
"321"

Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.

分析

寻找[1,...,n]的第k个组合可以通过[LeetCode 31. Next Permutation]来解决,只要对一个原始序列迭代k-1次即可得到结果,但是这个方法在LeetCode上提交后出现超时现象,因此需要寻找其他方法。

对于一个序列p(a1,a2,...,an),a1出现在第一个位置的组合有(n-1)!个,那么第k个组合的首位数字一定是p序列的第k/(n-1)!个数,以此类推得出:

a1 = k1 / (n-1)!

k2 = k1 % (n-1)!
a2 = k2/(n-2)!

kn = k(n-1)% 1!
an = k(n) / 0!

源码

方法1:通过next permutation迭代k-1

class Solution {
public:
    string getPermutation(int n, int k) {
        vector<int> nums(n);
        for(int i = 0; i < n; i++){
            nums[i] = (i + 1);
        }
        for(int j = 0; j < k - 1; j++) {
            nextPermutation(nums);
        }
        string ret;
        for(int m = 0; m < n; m++) {
            ret.push_back('0' + nums[m]);
        }
        return ret;
    }
      void nextPermutation(vector<int>& nums) {
        if(nums.size() < 2) return;

        int i = nums.size() - 1;
        int j = -1; // 1. 反向寻找到的pivot位置
        while(i > 0) {
            if(nums[i] > nums[i - 1]) { // 后一个数 < 前一个数
                j = i - 1;
                break;
            }
            i--;
        }

        if(j == -1) { // 说明序列是降序,只要翻转序列即可
            reverse(nums, 0, nums.size());
        } else { // 2. 序列存在下一个更大的排列,在nums.size() - 1,...,j+1间找到第一个比nums[j]要大的数
            int k = nums.size() - 1;
            while(k > j) {
                if(nums[k] > nums[j]) break;
                k--;
            }
            //3. 找到了交换的位置为k
            swap(nums[j], nums[k]);
            //4. 翻转交换后的序列
            reverse(nums,j + 1, nums.size() - j - 1);
        }
    }

    // 翻转一个序列
    void reverse(vector<int>& nums, int start, int length) {
        int middle = length / 2;
        int i = 0;
        while(i < middle) {
            swap(nums[start + i], nums[start + (length - 1 - i)]);
            i++;
        }
    }

    // 不占用额外空间交换两个数
    void swap(int& a, int& b) {
        a = a + b;
        b = a - b;
        a = a - b;
    }
};

方法二:

string getPermutation(int n, int k) {

        vector<int> nums(n);
        long long factorial = 1;
        for(int i = 0; i < n; i++) { // 计算阶乘
            factorial *=(i + 1);
            nums[i] = (i + 1);
        }

        string ret;
        k--;
        int found = 0;

        for(int j = 0; j < n; j++) {
            factorial = factorial / (n - j); // 从(n - 1)!开始
            found = k / factorial; 
            ret.push_back('0' + nums[found]);
            nums.erase(nums.begin() + found);//将找到的数字从序列中删除
            k = k % factorial;
        }

        return ret;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值