60. Permutation Sequence
The set [1,2,3,…,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
分析
寻找[1,...,n]
的第k
个组合可以通过[LeetCode 31. Next Permutation]来解决,只要对一个原始序列迭代k-1
次即可得到结果,但是这个方法在LeetCode上提交后出现超时现象,因此需要寻找其他方法。
对于一个序列p(a1,a2,...,an)
,a1
出现在第一个位置的组合有(n-1)!
个,那么第k
个组合的首位数字一定是p序列的第k/(n-1)!
个数,以此类推得出:
a1 = k1 / (n-1)!
k2 = k1 % (n-1)!
a2 = k2/(n-2)!
kn = k(n-1)% 1!
an = k(n) / 0!
源码
方法1:通过next permutation迭代k-1
次
class Solution {
public:
string getPermutation(int n, int k) {
vector<int> nums(n);
for(int i = 0; i < n; i++){
nums[i] = (i + 1);
}
for(int j = 0; j < k - 1; j++) {
nextPermutation(nums);
}
string ret;
for(int m = 0; m < n; m++) {
ret.push_back('0' + nums[m]);
}
return ret;
}
void nextPermutation(vector<int>& nums) {
if(nums.size() < 2) return;
int i = nums.size() - 1;
int j = -1; // 1. 反向寻找到的pivot位置
while(i > 0) {
if(nums[i] > nums[i - 1]) { // 后一个数 < 前一个数
j = i - 1;
break;
}
i--;
}
if(j == -1) { // 说明序列是降序,只要翻转序列即可
reverse(nums, 0, nums.size());
} else { // 2. 序列存在下一个更大的排列,在nums.size() - 1,...,j+1间找到第一个比nums[j]要大的数
int k = nums.size() - 1;
while(k > j) {
if(nums[k] > nums[j]) break;
k--;
}
//3. 找到了交换的位置为k
swap(nums[j], nums[k]);
//4. 翻转交换后的序列
reverse(nums,j + 1, nums.size() - j - 1);
}
}
// 翻转一个序列
void reverse(vector<int>& nums, int start, int length) {
int middle = length / 2;
int i = 0;
while(i < middle) {
swap(nums[start + i], nums[start + (length - 1 - i)]);
i++;
}
}
// 不占用额外空间交换两个数
void swap(int& a, int& b) {
a = a + b;
b = a - b;
a = a - b;
}
};
方法二:
string getPermutation(int n, int k) {
vector<int> nums(n);
long long factorial = 1;
for(int i = 0; i < n; i++) { // 计算阶乘
factorial *=(i + 1);
nums[i] = (i + 1);
}
string ret;
k--;
int found = 0;
for(int j = 0; j < n; j++) {
factorial = factorial / (n - j); // 从(n - 1)!开始
found = k / factorial;
ret.push_back('0' + nums[found]);
nums.erase(nums.begin() + found);//将找到的数字从序列中删除
k = k % factorial;
}
return ret;
}