题目描述
给定只有
a
,
b
a,b
a,b 字符串,求其子序列的个数,满足:
1.不能连续
2.位置对称
3.对称的位置上的字母相同
数据范围
∣ s ∣ ≤ 1 0 5 |s| \le 10^5 ∣s∣≤105
题解
我们可以先去掉限制一,也就是用满足后两条限制的子序列个数减去回文串的个数,而回文串的个数可以用马拉车或者二分哈希求出。
那么满足后两条限制的串不难发现对称的位置下标的和是相同的,所以我们可以想到卷积,即我们可以对于 x x x ,求出下标 ( i , j ) (i,j) (i,j) 的数对数满足 i + j = x i+j=x i+j=x 并且 s i = s j s_i=s_j si=sj ,所以我们可以分别把字母为 a a a 或 b b b 的位置打上 1 1 1 的标记,然后自卷积即可。
效率: O ( n l o g n ) O(nlogn) O(nlogn)
代码
#include <bits/stdc++.h>
#define db double
using namespace std;
const db PI=acos(-1);
const int N=4e5+5,P=1e9+7;
char s[N],b[N];
int n,t=1,p,r[N],a[N],ans,w[N];
struct O{db r,i;}f[N],g[N];
O operator + (O A,O B){
return (O){A.r+B.r,A.i+B.i};
}
O operator - (O A,O B){
return (O){A.r-B.r,A.i-B.i};
}
O operator * (O A,O B){
return (O){A.r*B.r-A.i*B.i,A.r*B.i+A.i*B.r};
}
void FFt(O *g,int o){
for (int i=0;i<t;i++)
if (i<r[i]) swap(g[i],g[r[i]]);
for (int i=1;i<t;i<<=1){
O wn=(O){cos(PI/i),sin(PI/i)*o};
for (int j=0;j<t;j+=(i<<1)){
O w=(O){1,0},x,y;
for (int k=0;k<i;k++,w=w*wn)
x=g[j+k],y=g[i+j+k]*w,
g[j+k]=x+y,g[i+j+k]=x-y;
}
}
if (!~o)
for (int i=0;i<t;i++) f[i].r=f[i].r/t+.5;
}
void W(int x){
for (int i=1;i<=n;i++)
f[i].r=g[i].r=(s[i]==x);
FFt(f,1);FFt(g,1);
for (int i=0;i<t;i++)
f[i]=f[i]*g[i];
FFt(f,-1);
for (int i=1;i<=n+n;i++)
a[i]+=(((int)f[i].r+1)>>1);
for (int i=0;i<t;i++)
f[i].r=g[i].r=f[i].i=g[i].i=0;
}
int M(){
for (int i=n;i;i--)
s[i<<1]=s[i],s[(i<<1)-1]='#';
s[n+n+1]='#';s[0]='@';
int ax=0,id=0;
for (int i=1;i<=n+n;i++){
r[i]=ax>i?min(r[id*2-i],ax-i):1;
while(s[i+r[i]]==s[i-r[i]]) r[i]++;
if (i+r[i]>ax) id=i,ax=i+r[i];
}
int v=0;
for (int i=1;i<=n+n;i++)
(v+=(r[i]>>1))%=P;
return v;
}
int main(){
w[0]=1;
for (int i=1;i<N;i++)
w[i]=(w[i-1]<<1)%P;
scanf("%s",s+1);n=strlen(s+1);
for (;t<=n+n;t<<=1,p++);
for (int i=0;i<t;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(p-1));
W(97);W(98);
for (int i=1;i<=n+n;i++)
(ans+=w[a[i]]-1)%=P;
cout<<(ans-M()+P)%P<<endl;
return 0;
}