【from new_dtoj 3969: pq】
题目描述
小q 的女朋友送给小q n个整数。但是这些数太大了,小q 的女朋友拿不动,于是拜托小q把这些数减少一些。
小q 每次可以选择其中的两个x,y (不能同时选择同一个数) 变成x−P,y−Q,现在他希望能知道最多能帮女朋友减掉多少P,Q。
输入
第一行一个数表示n。
第二行由空格隔开的n个数。
第三行两个数,表示p,q。
输出
一行一个数,表示能减掉的P和Q的总和。
样例输入
输入样例1
2
100 100
50 50
输入样例2
3
50 250 50
50 100
输入样例3
4
123 456 789 555
58 158
样例输出
输出样例1
200
输出样例2
300
输出样例3
1728
提示
对于前20%的数据,n≤5;
对于100%的数据,1≤n≤50,ci≤2000,50≤P,Q≤2000。
题解:
考虑dp
设Fi,j,k表示前i个数还有j个p和k个q没有匹配,转移的时候枚举把ci拆分成x个p和y个q的答案(分成4类)
其中x与k匹配,y与j匹配
例举一类:
当x<=k && y<=j时 故p剩下了j-y个,q剩下了k-x个
所以是f[i+1][j-y][k-x]=max(f[i+1][j][k]+x+y)
剩下的类似,具体见代码
#include <cstdio>
#include <string>
#include <cstring>
#define _(d) while(d(isdigit(c=getchar())))
using namespace std;
inline int R(){int x,f=1;char c;_(!)c=='-'?f=0:f;x=(c^48);_()x=(x<<3)+(x<<1)+(c^48);return f?x:-x;}
int n,s[55],p,q,ans,f[2][4005][4005];
inline void work(int i,int j,int k){
int l=(i&1);
for (int x=0;x*p<=s[i];x++){
int y=(s[i]-x*p)/q;
if (x<=k){
if (y<=j) f[l][j-y][k-x]=max(f[l][j-y][k-x],f[l^1][j][k]+x+y);
else f[l][0][k-x+y-j]=max(f[l][0][k-x+y-j],f[l^1][j][k]+x+j);
}
else{
if (y<=j) f[l][j-y+x-k][0]=max(f[l][j-y+x-k][0],f[l^1][j][k]+k+y);
else f[l][x-k][y-j]=max(f[l][x-k][y-j],f[l^1][j][k]+k+j);
}
}
}
int main(){
memset(f,0x8f,sizeof(f));n=R();f[0][0][0]=0;
for (int i=1;i<=n;i++) s[i]=R();p=R();q=R();
for (int i=1;i<=n;i++){
for (int j=0;j<=2000;j++) work(i,j,0);
for (int k=1;k<=2000;k++) work(i,0,k);
for (int j=1;j<=40;j++) for (int k=1;k<=40;k++) work(i,j,k);
}
for (int j=0;j<=2000;j++) for (int k=0;k<=2000;k++) ans=max(ans,f[n&1][j][k]);
printf("%d\n",ans*(p+q));
return 0;
}