关于训练误差、测试误差、泛化误差

我们在学习模式识别的时候,总是会遇到一些专业词汇,而其中有的专业词汇叫人傻傻分不清。

今天我就来说说训练误差、测试误差、泛化误差到底是什么,区别所在。

 

对于分类学习算法,我们一般将样本集分为训练集和测试集,其中训练集用于算法模型的学习或训练,而测试集通常用于评估训练好的模型对于数据的预测性能评估。而这个先后顺序就是先将算法在训练集上训练得到一个模型,然后在测试集上评估性能。

 

这个时候我们通常要考虑评估的这个性能是否合理。由于测试学习算法是否成功在于算法对于训练中未见过的数据的预测执行能力,因此我们一般将分类模型的误差分为训练误差(Training Error)和泛化误差(Generalization Error)。那么这两个误差到底是什么呢?

 

训练误差是指模型在训练集上的错分样本比率,说白了就是在训练集上训练完毕后在训练集本身上进行预测得到了错分率

(同样的测试误差就是模型在测试集上的错分率)

泛化误差是指模型在未知记录上的期望误差,说白了就是在训练集上没见过的数据的错分样本比率。

 

因此在样本集划分时,如果得到的训练集与测试集的数据没有交集,此时测试误差基本等同于泛化误差。

因此以上就是三者的意义所在和区别所在!!

泛化误差指的是模型在未见过的数据上的预测性能与真实结果之间的差距。它是衡量模型对未知数据适应能力的重要指标。在机器学习中,理想情况下的泛化误差应当尽可能小,这意味着模型能够很好地从训练数据中学习到普遍规律而非偶然特征。 在Python机器学习实践中,我们通过交叉验证(如GridSearchCV在引用中的应用)来估计泛化误差。这种方法通过将数据集划分为若干子集,在其中一组子集上进行训练,在其余子集上进行测试,以此类推,确保每个样本都有机会参与到训练测试过程中。这种做法可以得到多个模型性能的平均分数,从而更准确地估算泛化误差。 关于引用提到的大数定律和Hoeffding不等式,它们用于证明经验误差(基于有限样本计算的误差)在理论上会接近泛化误差。随着训练数据量的增加,经验和泛化误差之间通常趋于一致,但并非绝对相等。如果模型的泛化误差显著大于训练误差,可能表示存在欠拟合或过拟合问题: - **欠拟合**:模型过于简单,无法捕捉数据中的复杂关系,导致即使在训练集上表现不佳。 - **过拟合**:模型过于复杂,过度拟合了训练数据中的噪声和异常点,因此在新数据上的表现不佳。 要解决这些问题,可以通过调整模型复杂度、增加正则化、使用更多的特征选择技术等方式来优化模型的泛化能力。 ### 相关问题: 1. 如何利用交叉验证估计模型的泛化误差? 2. 欠拟合和过拟合的区别是什么? 3. 正则化是如何帮助减小泛化误差的?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值