【蓝桥杯】递归回溯

本文介绍了两种算法问题的解决方案,分别是根据数字和寻找初始排列的全排列搜索,以及求解两根等长木棍最大长度的子集搜索。通过DFS深度优先搜索策略,分别解决了排列组合的字典序最小排列问题和木棍组合的最大长度问题。这些算法涉及全排列、子集树模板以及剪枝技巧,对于理解递归和回溯算法有很好的实践价值。
摘要由CSDN通过智能技术生成

算法训练 数字游戏

题目

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

给定一个1~N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少1,最终只剩一个数字。
  例如:
  3 1 2 4
  4 3 6
  7 9
  16
  现在如果知道N和最后得到的数字sum,请求出最初序列a[i],为1~N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解

输入格式

第1行为两个正整数n,sum

输出格式

一个1~N的一个排列

样例输入

4 16

样例输出

3 1 2 4

数据规模和约定

0<n<=10

分析

  • 输出样例 3 1 2 4 为 1-4 的数

  • 全排列求和比较是否等于sum

  • 由于满足要求的结果可能有多个,还需比较字典序,选择小的

  • 比较字典序:假设下列三个结果都满足结果

    3 1 2 4

    3 2 1 4

    4 3 2 1

    每得出一个结果就与上一次的结果相比较,如果字典序小,就将上一次存储的结果替换。否则,继续搜索下一次结果。

DFS排序树模板
排序树
int x[n]; 
void backtrack (int t)
{ if (t>n) output(x);
  else
   for (int i=t;i<=n;i++) {
     swap(x[t], x[i]);
     if (constraint(i) && bound(i))
     backtrack(t+1);
     swap(x[t], x[i]);
    }
} 

代码

#include<iostream>

using namespace std;

int a[1000],b[1000],x[1000];
int n,m;

//检查是否满足sum 
bool check()
{
	for(int i=0;i<n;i++)
		b[i]=a[i];
	for(int i=n;i>1;i--)
	{
		for(int j=0;j<i-1;j++)
		{
			b[j]=b[j]+b[j+1];
		}
	}
//	cout << "fasdfsd"<<b[0]<<endl;
	if(b[0]==m)
	{
		return true;
	}	
	return false;
}
//比较字典序
bool zipmin()
{
	for(int i=0;i<n;i++)
	{
		if(a[i]==x[i])
			continue;
		else if(a[i]<x[i])
		{
			return true;
		}
		else
			return false;
	}
//	return false;
}

//全排列 
void dfs(int i)
{
	if(i>=n)
	{
//		if(check())
//			cout<<"yes";
		if(check()&&zipmin())
		{
			for(int k=0;k<n;k++)
			{
//				cout << a[k]<<" ";
				x[k]=a[k];
			}
		}
		
		
//		cout <<endl;
	}
	else{
		for(int j=i;j<n;j++)
		{
			swap(a[i],a[j]);
			dfs(i+1);
			swap(a[i],a[j]);
		}
	}
	
	
}

int main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++)
	{
		a[i]=i+1;
		x[i]=n;
	}
	dfs(0);
	for(int k=0;k<n;k++)
	{
		cout << x[k]<<" ";
//		x[k]=a[k];
	}
	return 0;
 } 

//得分 90

算法训练 无聊的逗

题目

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

逗志芃在干了很多事情后终于闲下来了,然后就陷入了深深的无聊中。不过他想到了一个游戏来使他更无聊。他拿出n个木棍,然后选出其中一些粘成一根长的,然后再选一些粘成另一个长的,他想知道在两根一样长的情况下长度最长是多少。

输入格式

第一行一个数n,表示n个棍子。第二行n个数,每个数表示一根棍子的长度。

输出格式

一个数,最大的长度。

样例输入

4
1 2 3 1

样例输出

3

数据规模和约定

n<=15

分析

通过题目可知是从已有的木棍中选择一组n根木棍与选择一组m根木棍,比较n根木棍长度和等于m根木棍长度和且长度最大。

1 2 3 1 编码 (1 1 1 1)表示都取,(0 0 0 0)表示都不取,2^n个组合。

DFS 子集树 将木棍分成三种情况(选 不选 放弃)

如果需要记录选择的木棍 定义x[ ] (1 0 -1)来表示木棍的状态

DFS子集树模板
子集树
int x[n];		 
void backtrack(int i)	
{ if(i>n)  output(x)	;
  else
 { for (j=0;j<=1;j++)  
   { x[i]=j;	    
     if (constraint(i) && bound(i))
     backtrack(i+1);	      
   }
}

代码

#include<iostream>
#include<algorithm>

using namespace std;

int n,a[20];//长度 数组 
int maxsum=0;

//将木棍分成三种情况(选 不选 放弃)

//   深搜  下标 左堆  右堆 
void dfs(int i,int l,int r)
{
	if (l==r && maxsum < l)
	{
		maxsum = l;
	}
	else
	{
	//dfs剪枝(左堆小于右堆) 或 下标越界
		if(l > r && i < n){
			dfs(i+1,l,r);//不选
			dfs(i+1,l-a[i],r+a[i]);//选
			dfs(i+1,l-a[i],r);//放弃 
		}
	}
 } 

int main()
{
	cin >> n;
	int sum=0; 
	for(int i=0;i<n;i++)
	{
		cin >> a[i];
		sum=sum+a[i];
	}	
	sort(a,a+n);
	dfs(0,sum,0);
	cout<<maxsum;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值