快速排序中的下标问题

文章详细解释了快速排序算法的工作原理,特别是下标操作的关键点。在代码实现中,通过选取中点作为分界点,确保左右子区间的顺序关系,同时指出了在特定情况下(如区间长度为偶数或只有两个数时)如何避免死循环的策略。
摘要由CSDN通过智能技术生成

快速排序

https://www.acwing.com/problem/content/787/

详细解释在这篇文章(https://blog.csdn.net/Joker15517/article/details/118330471)中,本文主要解释下标相关的问题

快速排序代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10;

int n;
int a[N];

void qsort(int l, int r) {
    if (l >= r) return ;
    
    int i = l - 1, j = r + 1, k = a[(l + r + 1) >> 1];
    while(i < j) {
        do i ++; while(a[i] < k);
        do j --; while(a[j] > k);
        if (i < j) swap(a[i], a[j]);
    }
    qsort(l, i - 1);
    qsort(i, r);
}
int main() {
    cin >> n;
    for (int i = 0; i < n; i ++) cin >> a[i];
    qsort(0, n-1);
    for (int i = 0; i < n; i ++) cout << a[i] << " ";
    cout << endl;
    return 0;
}
// 1 1 1 1 2 4 3 5

快速排序的思路很清晰,采用分治的思想,每次将区间划分成左右两个子区间,保证右区间的数都大于等于左区间,而子区间内部不保证有序,之后递归处理左右子区间。

问题是实现过程中对下标的处理容易出错,在这里下记录自己的理解。

通过上述代码可以看出i左边的数一定小于kj右边的数一定大于kk是我们选出来的分界点,取区间中点。经过循环后a[i] >= ka[j] <= k,因此我们可以选择的分界点有两种情况。

a[i] > k成立的一种情况

49 59 88 37 3 97 68 54 31 98

l = 0, r = 9, k = 3

最终得到:3 59 88 37 49 97 68 54 31 98

此时的i = 1, j = 0, a[i] > k

  • qsort(l, i - 1), qsort(i, r)

    针对该情况,需要注意,当使用k = a[l + r >> 1]时, 我们每次选择的k是区间中点或偏左(区间长度为偶数)的位置,当区间只有两个数时,会出现死循环。因此需要使用k = a[l + r + 1 >> 1]

    3 5

    l = 0, r = 1, k = 3

    循环后 i = 0, j = 0

    重复qsort(l, r)递归

  • qsort(l, j), qsort(j + 1, r)

    该情况同上所述,需要使用k = a[l + r >> 1]

    3 5

    l = 0, r = 1, k = 5

    循环后 i = 1, j = 1

    重复qsort(l, r)递归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值