数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关
目录
1.链栈的表示和实现
链栈是指采用链式存储结构实现的的栈。通常链栈用单链表来表示,定义如下
typedef struct StackNode
{
ElemType data;
struct StackNode *next;
}StackNode,*LinkStack;
1.初始化
链栈的初始化操作就是构造一个空栈,因为没必要设头节点,所以直接将栈项指针置空即可。
Staus InitStack(LinkStack &S)
{//构造一个空栈S,栈项指针置空
S=NULL;
return OK;
}
2.入栈
和顺序栈的入栈操作不同的是,链栈在入栈前不需要判断栈是否满,只需要为入站元素动态分配一个节点空间。
Status Push(LinkStack &S, SElemType e)
{
p=new StackNode;
p->data=e;
p->next=S;
S=p;
return OK;
}
3.出栈
和顺序栈一样,链栈在出栈前也需要判断栈是否为空,不同的是,链栈在出栈后需要释放出栈元素的栈项空间。
if(S==NULL) return ERROR;
{
e=S->data;
p=S;
S=S->next;
delete p;
return OK;
}
4.取栈项元素
与顺序栈一样,当栈非空时,取栈项元素操作返回当前栈项元素的值,栈项指针S保持不变。
SElemType GetTop(LinkStack S)
{
if(S!=NULL)
return S->data;
}
2.栈与递归
栈有一个重要应用是在程序设计语言中实现递归。递归是算法设计中常用的手段,它通常可把一个大型复杂问题的描述和求解变得简洁和清晰。因此递归算法常常比非递归算法更容易设计,尤其是当问题本身或所涉及的数据结构是递归定义的时候,使用递归方法更加合适。为使读者增强理解和设计递归算法的能力。
1.定义是递归的
有很多数学函数是递归定义的,如大家熟悉的阶乘函数:
long Fact(long n)
{
if(n==0) //递归终止的条件
return 1;
else
return n*Fact(n-1); //递归步骤
}
类似的,我们可写出斐波那契数列的递归程序
long Fib(long n)
{
if(n==1||n==2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
2.数据结构是递归的
遍历输出链表中的每个节点的递归算法
void TraverseList(LinkList P)
{
if(p==NULL) //递归终止
return;
else
{
cout<<p->data<<endl; //输出当前节点的数据域
TraverseList(p->next); //P指向后继节点继续递归
}
}
3.队列的类型定义
队列的操作与栈的操作类似,不同的是,删除是在表的头部(队头)进行的
ADT Queue
{
数据结构:D={a}
数据关系:R={}
基本操作:
InitQueue(&Q)
操作结果:构造一个空队列Q
DestroyQueue(&Q)
初始条件:队列Q已存在。
操作结果:队列Q被销毁,不再存在
ClearQueue(&Q)
初始条件:队列Q已存在。
操作结果:将Q清为空队列
QueueEmpty(Q)
初始条件:队列Q已存在。
操作结果:若Q为空队列,则返回true,否则返回false
QueueLength(Q)
初始条件:队列Q已存在。
操作结果:返回Q的元素个数,即队列的长度
GetHead(Q)
初始条件:Q为非空队列
操作结果:返回Q的元素个数,即队列的长度
EnQueue(&Q,e)
初始条件:队列Q已存在。
操作结果:插入元素e为Q的新队尾元素
DeQueue(&Q,&e)
初始条件:队列Q已存在。
操作结果:删除Q的队头元素,并用e返回其值
QueueTraverSe(Q)
初始条件:Q已存在且非空
操作结果:从队头到队尾吗,依次对Q的每个数据元素进行访问
}ADT Queue
4.小总结
本次内容主要了讲解了数据结构中的一些基础知识点,主要内容顺序表的有关知识本篇内容都为数据结构的基本思想,若想更深的理解以及体会,还请大家在日常学习中多多努力,希望大家学有所成。