poj 1375 Intervals

Description

In the ceiling in the basement of a newly open developers building a light source has been installed. Unfortunately, the material used to cover the floor is very sensitive to light. It turned out that its expected life time is decreasing dramatically. To avoid this, authorities have decided to protect light sensitive areas from strong light by covering them. The solution was not very easy because, as it is common, in the basement there are different pipelines under the ceiling and the authorities want to install the covers just on those parts of the floor that are not shielded from the light by pipes. To cope with the situation, the first decision was to simplify the real situation and, instead of solving the problem in 3D space, to construct a 2D model first.
Within this model, the x-axis has been aligned with the level of the floor. The light is considered to be a point light source with integer co-ordinates [bx,by]. The pipes are represented by circles. The center of the circle i has the integer co-ordinates [cxi,cyi] and an integer radius ri. As pipes are made from solid material, circles cannot overlap. Pipes cannot reflect the light and the light cannot go through the pipes. You have to write a program which will determine the non-overlapping intervals on the x-axis where there is, due to the pipes, no light from the light source.
poj <wbr>1375 <wbr>Intervals

Input

The input consists of blocks of lines, each of which except the last describes one situation in the basement. The first line of each block contains a positive integer number N < 500 expressing the number of pipes. The second line of the block contains two integers bx and by separated by one space. Each of the next N lines of the block contains integers cxi, cyi and ri, where cyi + ri < by. Integers in individual lines are separated by one space. The last block consists of one line containing n = 0.

Output

The output consists of blocks of lines, corresponding to the blocks in the input(except the last one). One empty line must be put after each block in the output. Each of the individual lines of the blocks in the output will contain two real numbers, the endpoints of the interval where there is no light from the given point light source. The reals are exact to two decimal places and separated by one space. The intervals are sorted according to increasing x-coordinate.

Sample Input

6
300 450
70 50 30
120 20 20
270 40 10
250 85 20
220 30 30
380 100 100
1
300 300
300 150 90
1
300 300
390 150 90
0

Sample Output

0.72 78.86
88.50 133.94
181.04 549.93

75.00 525.00

300.00 862.50

Source

 
题目大意:在(bx,by)的位置上有一个光源。y=0是地面。在光源和地面之间有N个水管,圆心坐标分别为(cxi,cyi),半径为ri,且满足cyi+ri<by。求地面上不能被光照到的区间。
 
//==========================================================================================
 
这题N很小,只要求出光线被每个水管遮挡住的区间,再合并下输出即可。
 
但这里涉及到一个问题:怎么在知道了一个圆的圆心坐标及半径和圆外一点坐标的情况下求解过这个定点关于圆的两条切线方程?
如图:
poj <wbr>1375 <wbr>Intervals
已知A点坐标,O点坐标,可以求向量AO。又知道圆心O点的坐标,根据勾股定理可以求出AC的长度。这样,求切线AO,AD就可以转化为已知旋转角为∠CAO的大小,求AO向量经过顺时针和逆时针旋转后的向量。这里已经知道了旋转角sin和cos的值(即CO/AO,AC/AO),结果就更加精确了。
 
具体的向量旋转方法请参见: http://blog.sina.com.cn/s/blog_7c4c33190100u7mm.html
 
AC CODE
 
program pku_1375;
type line=record
                      x,y:real;
                  end;
var x,y,r,x1,y1,x2,y2:array[0..500] of real;
      ox,oy:real;
      n:longint;
//============================================================================
function clockwise(x,y,si,co:real):line;
begin
  clockwise.x:=y*si+x*co;
  clockwise.y:=y*co-x*si;
end;
//============================================================================
function anti_clockwise(x,y,si,co:real):line;
begin
  anti_clockwise.x:=-y*si+x*co;
  anti_clockwise.y:=y*co+x*si;
end;
//============================================================================
procedure qsort(l,r:longint);
var k,t:real;
      i,j:longint;
begin
  k:=x1[(l+r) shr 1]; i:=l; j:=r;
  repeat
      while x1[i]<k do inc(i);
      while x1[j]>k do dec(j);
      if i<=j then
      begin
          t:=x1[i]; x1[i]:=x1[j]; x1[j]:=t;
          t:=y1[i]; y1[i]:=y1[j]; y1[j]:=t;
          inc(i); dec(j);
      end;
  until i>j;
  if j>l then qsort(l,j);
  if r>i then qsort(i,r);
end;
//============================================================================
procedure work;
var i,tot:longint;
      l1,l2:line;
      a,b,c:real;
begin
  readln(n); if n=0 then halt;
  readln(ox,oy);
  for i:=1 to n do
  begin
      readln(x[i],y[i],r[i]); a:=r[i];
      c:=sqrt(sqr(x[i]-ox)+sqr(y[i]-oy));
      b:=sqrt(sqr(c)-sqr(a));
      l1:=clockwise(x[i]-ox,y[i]-oy,a/c,b/c);
      l2:=anti_clockwise(x[i]-ox,y[i]-oy,a/c,b/c);
      x1[i]:=ox-oy*l1.x/l1.y; y1[i]:=ox-oy*l2.x/l2.y;
  end;
  qsort(1,n); tot:=0; y2[0]:=-maxlongint;
  for i:=1 to n do
  begin
      if x1[i]>y2[tot] then
      begin
          inc(tot);
          x2[tot]:=x1[i]; y2[tot]:=y1[i];
      end else
      if y1[i]>y2[tot] then y2[tot]:=y1[i];
  end;
  for i:=1 to tot do writeln(x2[i]:0:2,' ',y2[i]:0:2);
  writeln;
end;
//============================================================================
begin
  while true do work;
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值