poj 3225 Help with Intervals

题目意思不再重复了,有中文的题意

思路:区间的开和闭直接开两倍的点数就可以了,奇数的表示边界点,偶数的表示比边界点大一点点的点。
      然后这几个操作总的是要做区间覆盖和区间抑或。
      覆盖的话非常简单,不再叙述。
      抑或的话最直接的想法就是找到相同的区间,然后再做抑或操作。就是找到一个满区间时,如果区间内的点不是全部为0或者全部为1,则继续向下找。直到找到都是相同的为止。
      但是这种思路不是严格logn的,如果操作非常多的话退化情况会非常严重,虽然在扫描线的时候我们也是这么做的,但是这种做法至少告诉我们是有风险的,这个题目就过不去。
      更好的办法是区间抑或的时候用一个抑或延迟标记来标记,这样就是严格的logn的。
      两种延迟标记的处理方法。
      如果得到了覆盖标志,那么抑或标记就置为0.
      如果得到了抑或标记,那么存在覆盖标记的话,抑或覆盖标记,否则抑或标记加1.
      然后这个题目因为只要一次查找,所以用了一个把结果全部下放到叶子区间再处理结果的方法。
#include <iostream>
#include <stdio.h>
#include <string.h>
#define ls t<<1
#define rs t<<1|1
#define midt (tr[t].l+tr[t].r)>>1
using namespace std;
const int maxn=65535+1000;
int que[maxn<<1],lon;
struct
{
    int l,r;
    int data,lazy,ture;
    int hlazy;
}tr[maxn<<3];

void maketree(int t,int l,int r)
{
    tr[t].l=l;
    tr[t].r=r;
    tr[t].data=0;
    tr[t].lazy=-1;
    tr[t].ture=1;
    tr[t].hlazy=0;
    if(l==r)
    {
        que[++lon]=t;
        return;
    }
    int mid=midt;
    maketree(ls,l,mid);
    maketree(rs,mid+1,r);
}

void pushdown(int t)
{
    tr[ls].hlazy=tr[rs].hlazy=0;
    tr[ls].data=tr[rs].data=tr[t].lazy;
    tr[ls].lazy=tr[rs].lazy=tr[t].lazy;
    tr[ls].ture=tr[rs].ture=1;
    tr[t].lazy=-1;
}

void pushdownh(int t)
{
    tr[ls].data^=1;
    tr[rs].data^=1;

    if(tr[ls].lazy!=-1) tr[ls].lazy^=1;
    else tr[ls].hlazy+=tr[t].hlazy;
    if(tr[rs].lazy!=-1) tr[rs].lazy^=1;
    else tr[rs].hlazy+=tr[t].hlazy;
    tr[ls].hlazy&=1;
    tr[rs].hlazy&=1;
    tr[t].hlazy=0;
}

void modify(int t,int l,int r,int tmp)
{
    if(l<=tr[t].l&&r>=tr[t].r)
    {
        if(tmp==1)
        {
            tr[t].ture=tr[t].data=tr[t].lazy=1;
            tr[t].hlazy=0;
        }

        else if(tmp==2)
        {
            tr[t].ture=1;
            tr[t].data=tr[t].lazy=0;
            tr[t].hlazy=0;
        }

        else if(tr[t].ture)
        {
            tr[t].data^=1;
            tr[t].lazy=tr[t].data;
            tr[t].hlazy=0;
        }
        else
        {
            if(tr[t].lazy!=-1) tr[t].lazy^=1;
            else tr[t].hlazy=(tr[t].hlazy+1)&1;
        }
        return;
    }

    if(tr[t].hlazy)
    pushdownh(t);
    if(tr[t].lazy!=-1)
    pushdown(t);


    int mid=midt;
    if(l<=mid) modify(ls,l,r,tmp);
    if(mid+1<=r) modify(rs,l,r,tmp);

    if(tr[ls].ture&&tr[rs].ture&&(tr[ls].data==tr[rs].data))
    {
        tr[t].ture=1;
        tr[t].data=tr[ls].data;
    }
    else
    tr[t].ture=0;
}

int main()
{
//     freopen("in.txt","r",stdin);
    lon=0;
    maketree(1,1,65550*2);
    char tmp[10],txt[10];
    int l,r;
    while(scanf("%s",tmp)!=EOF)
    {
        scanf(" %c%d,%d%c",&txt[0],&l,&r,&txt[4]);
        l=(l+1)<<1;
        r=(r+1)<<1;
        r--;
        if(txt[0]=='[')
        l--;
        if(txt[4]==')')
        r--;

        if(l>r)
        {
            if(tmp[0]=='I'||tmp[0]=='C')
            {
                modify(1,1,65550*2,2);
            }
            continue;
        }

        if(tmp[0]=='U')
        {
            modify(1,l,r,1);
        }
        else if(tmp[0]=='I')
        {
            modify(1,r+1,65550*2,2);
            if(1<=l-1)
            modify(1,1,l-1,2);
        }
        else if(tmp[0]=='D')
        {
            modify(1,l,r,2);
        }
        else if(tmp[0]=='C')
        {
            modify(1,l,r,3);
            if(1<=l-1)
            modify(1,1,l-1,2);
            modify(1,r+1,65550*2,2);
        }
        else
        {
            modify(1,l,r,3);
        }
    }

    for(int i=1;i<=65550*2*2;i++)
    {
        if(tr[i].hlazy) pushdownh(i);
        if(tr[i].lazy!=-1) pushdown(i);
    }

    int k=1;
    int ture=0;
     
    while(k<=lon)
    {
        while(!tr[que[k]].data&&k<=lon) k++;
        if(k>lon) break;
        if(ture) printf(" ");
        if(k%2==0) printf("(");
        else printf("[");
        printf("%d,",(k+1)/2-1);
        while(tr[que[k]].data) k++;
        printf("%d",(k+1)/2-1);
        if((k-1)%2==0) printf(")");
        else printf("]");
        ture=1;
    }
    if(!ture)
    printf("empty set");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值