洛谷P2872 [USACO07DEC]Building Roads S(最小生成树prim)

题目传送门

这里介绍下prim算法。
prim算法也是最小生成树的一种算法,对于对于一张图,我们要建立他的最小生成树,之前写过一个针对稀疏图的kruskal算法,现在我们介绍针对稠密图的prim算法。

kruskal时间复杂度为eloge(e是边数),prim朴素版时间复杂度是O(n^2),小根堆优化后时间复杂度为elogn,(n是顶点数),对于边多的图,明显prim要更快。

我们设定两个点的集合,U,V。U表示已经在生成树中的点,V表示没有在生成树中的点。我们以任意一个点出发,比如点1。我们每次找一个距离生成树中的任意点最近的点,然后把它加入到生成树中,并且将与其连通的点进行松弛,直到把剩下n-1个点全部加入到生成树中。

朴素版prim算法代码:

#include<bits/stdc++.h>
using namespace std;
const int N=1e3+5;
const int inf=0x7fffffff;
const int mod=1e9+7;
const int eps=1e-6;
typedef long long ll;
typedef unsigned long long ull;
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pii pair<int,int>
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl '\n'
int x[N],y[N];
double js(int x1,int x2,int y1,int y2)
{
    return sqrt(pow(double(x1-x2),2)+pow(double(y1-y2),2));//这个地方必须强制double,也可以有其他写法,要不有四个点会输出-nan
}
double a[N][N],d[N];
int b[N];
signed main()
{
    IOS;
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>x[i]>>y[i];
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            a[i][j]=a[j][i]=js(x[i],x[j],y[i],y[j]);
        }
    }
    for(int i=1;i<=m;i++)
    {
        int q,p;
        cin>>p>>q;
        a[p][q]=a[q][p]=0;
    }
    memset(d,0x7f,sizeof d);
    for(int i=1;i<=n;i++)
    {
        d[i]=a[1][i];
    }
    d[1]=0;b[1]=1;
    for(int i=1;i<=n-1;i++)
    {
        int k=0;
        for(int j=1;j<=n;j++)
        {
            if(!b[j]&&d[j]<d[k])
            {
                k=j;
            }
        }
        b[k]=1;
        for(int j=1;j<=n;j++)
        {
            if(!b[j]&&a[j][k]<d[j])
                d[j]=a[j][k];
        }
    }
    double res=0;
    for(int i=1;i<=n;i++)
    {
        res+=d[i];
    }
    printf("%.2f",res);
}

我们发现,每次加入一个点之后,我们都要O(n)的去更新信息,这样很浪费时间,其实在更新的时候我们只需要将与新加入的点相连的点更新就可以了。而链式前向星可以很好的牺牲空间换取时间的达到这一要求。

链式前向星+小根堆优化版

#include<bits/stdc++.h>
using namespace std;
const int N=1e3+5;
const int inf=0x7fffffff;
const int mod=1e9+7;
const int eps=1e-6;
typedef long long ll;
typedef unsigned long long ull;
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pii pair<int,int>
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl '\n'
int x[N],y[N];
double js(int x1,int x2,int y1,int y2)
{
    return sqrt(pow(double(x1-x2),2)+pow(double(y1-y2),2));
}
int head[1100005],nxt[1100005],to[1100005];double val[1100005];int tot=0;
void add(int u,int v,double w)
{
    nxt[++tot]=head[u];
    to[tot]=v;
    val[tot]=w;
    head[u]=tot;
}
int b[N];int n,m;
void prim()
{
    priority_queue<pair<double,int> >q;
    q.push(mp(0,1));
    int cnt=0;double res=0;
    while(!q.empty())
    {
        int u=q.top().se;
        double di=q.top().fi;
        q.pop();
        if(!b[u])
        {
            b[u]=1;
            res+=di;
            for(int i=head[u];i;i=nxt[i])
            {
                int v=to[i];
                if(!b[v])
                {
                    q.push(mp(-val[i],v));
                }
            }
        }
    }
    printf("%.2f",-res);
}
signed main()
{
    IOS;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>x[i]>>y[i];
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            add(i,j,js(x[i],x[j],y[i],y[j]));
            add(j,i,js(x[i],x[j],y[i],y[j]));
        }
    }
    for(int i=1;i<=m;i++)
    {
        int l,r;
        cin>>l>>r;
        add(l,r,0);add(r,l,0);
    }
    prim();
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个长度为 $n$ 的书架,每本书有一个高度 $h_i$。现在你可以进行以下两种操作: - 将一本书放在书架的最左边或最右边,花费为 $c_1$。 - 将一本高度为 $h_i$ 的书放在一本高度为 $h_j$ 的书的上面,花费为 $c_2$。 现在你需要将书架上的书按照高度从小到大排列,求最小花费。 输入格式 第一行包含三个整数 $n,c_1,c_2$。 第二行包含 $n$ 个整数 $h_i$。 输出格式 输出一个整数,表示最小花费。 数据范围 $1\leq n\leq 200,1\leq c_1,c_2\leq 10^9,1\leq h_i\leq 10^9$ 输入样例 5 1 2 3 1 4 2 5 输出样例 6 算法1 (动态规划) $O(n^2)$ 首先考虑一个朴素的 dp,设 $f_{i,j}$ 表示前 $i$ 本书已经排好序,第 $i+1$ 本书放在第 $j$ 个位置的最小花费。 状态转移方程为: $$ f_{i,j}=\min\{f_{i-1,k}+c_1\}+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases} $$ 其中 $k$ 取遍 $1\sim i$,表示将第 $i+1$ 本书放在第 $k$ 个位置。 时间复杂度 $O(n^3)$ C++ 代码 算法2 (单调队列优化) $O(n^2)$ 考虑优化上述 dp,发现状态转移方程中的 $\min$ 操作可以用单调队列优化,具体来说,我们维护一个单调递增的队列 $q$,其中 $q_i$ 表示第 $i$ 个位置的最小花费,那么对于状态 $f_{i,j}$,我们只需要找到 $q$ 中第一个大于等于 $f_{i-1,k}+c_1$ 的位置 $p$,然后 $f_{i,j}=q_p+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases}$。 时间复杂度 $O(n^2)$ C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值